51 template <
class Scalar, 
class ArrayPo
int, 
class ArrayWeight>
 
   53   this->degree_    = degree;
 
   55   TEUCHOS_TEST_FOR_EXCEPTION((degree < 0) || (degree > INTREPID_CUBATURE_LINE_GAUSSJACOBI20_MAX_ENUM),
 
   57                      ">>> ERROR (CubatureDirectLineGaussJacobi20): No cubature rule implemented for the desired polynomial degree.");
 
   62 template <
class Scalar, 
class ArrayPo
int, 
class ArrayWeight>
 
   64   return cubature_data_;
 
   69 template <
class Scalar, 
class ArrayPo
int, 
class ArrayWeight>
 
   71   return INTREPID_CUBATURE_LINE_GAUSSJACOBI20_MAX_ENUM;
 
   76 template <
class Scalar, 
class ArrayPo
int, 
class ArrayWeight>
 
   78   return cubature_name_;
 
   83 template <
class Scalar, 
class ArrayPo
int, 
class ArrayWeight>
 
  101 template <
class Scalar, 
class ArrayPo
int, 
class ArrayWeight>
 
  110     {2.66666666666666666666666666}
 
  115     {2.66666666666666666666666666}
 
  119     {{-7.549703546891172e-1, 0.0, 0.0},
 
  120      {8.830368802245062e-2, 0.0, 0.0}},
 
  122      8.062870566386037e-01}
 
  126     {{-7.549703546891172e-1, 0.0, 0.0},
 
  127      {8.830368802245062e-2, 0.0, 0.0}},
 
  129      8.062870566386037e-01}
 
  133     {{-8.540119518537008e-01, 0.0, 0.0},
 
  134      {-3.059924679232963e-01, 0.0, 0.0},
 
  135      { 4.100044197769969e-01, 0.0, 0.0}},
 
  136     {1.257090888519093e+00,
 
  137      1.169970154078928e+00,
 
  138      2.396056240686456e-01}
 
  142     {{-8.540119518537008e-01, 0.0, 0.0},
 
  143      {-3.059924679232963e-01, 0.0, 0.0},
 
  144      { 4.100044197769969e-01, 0.0, 0.0}},
 
  145     {1.257090888519093e+00,
 
  146      1.169970154078928e+00,
 
  147      2.396056240686456e-01}
 
  151     {{-9.029989011060054e-01, 0.0, 0.0},
 
  152      {-5.227985248962754e-01, 0.0, 0.0},
 
  153      {3.409459020873505e-02, 0.0, 0.0},
 
  154      {5.917028357935457e-01, 0.0, 0.0}},
 
  155     {8.871073248902235e-01,
 
  156      1.147670318393715e+00,
 
  157      5.490710973833849e-01,
 
  158      8.281792599934450e-02}
 
  162     {{-9.029989011060054e-01, 0.0, 0.0},
 
  163      {-5.227985248962754e-01, 0.0, 0.0},
 
  164      {3.409459020873505e-02, 0.0, 0.0},
 
  165      {5.917028357935457e-01, 0.0, 0.0}},
 
  166     {8.871073248902235e-01,
 
  167      1.147670318393715e+00,
 
  168      5.490710973833849e-01,
 
  169      8.281792599934450e-02}
 
  173     {{-9.308421201635699e-01, 0.0, 0.0},
 
  174      {-6.530393584566085e-01, 0.0, 0.0},
 
  175      {-2.202272258689614e-01, 0.0, 0.0},
 
  176      {2.686669452617736e-01, 0.0, 0.0},
 
  177      {7.021084258940329e-01, 0.0, 0.0}},
 
  178     {6.541182742861678e-01,
 
  179      1.009591695199292e+00,
 
  180      7.136012897727201e-01,
 
  181      2.564448057836956e-01,
 
  182      3.291060162479211e-02}
 
  186     {{-9.308421201635699e-01, 0.0, 0.0},
 
  187      {-6.530393584566085e-01, 0.0, 0.0},
 
  188      {-2.202272258689614e-01, 0.0, 0.0},
 
  189      {2.686669452617736e-01, 0.0, 0.0},
 
  190      {7.021084258940329e-01, 0.0, 0.0}},
 
  191     {6.541182742861678e-01,
 
  192      1.009591695199292e+00,
 
  193      7.136012897727201e-01,
 
  194      2.564448057836956e-01,
 
  195      3.291060162479211e-02}
 
  199     {{-9.481908898126656e-01, 0.0, 0.0},
 
  200      {-7.368721166840297e-01, 0.0, 0.0},
 
  201      {-3.951261639542174e-01, 0.0, 0.0},
 
  202      {1.807282632950432e-02, 0.0, 0.0},
 
  203      {4.313622546234276e-01, 0.0, 0.0},
 
  204      {7.736112323551237e-01, 0.0, 0.0}},
 
  205     {5.003096218126469e-01,
 
  206      8.590119978942462e-01,
 
  207      7.566174939883307e-01,
 
  208      4.103165690369299e-01,
 
  209      1.257623774795603e-01,
 
  210      1.464860645495425e-02}
 
  214     {{-9.481908898126656e-01, 0.0, 0.0},
 
  215      {-7.368721166840297e-01, 0.0, 0.0},
 
  216      {-3.951261639542174e-01, 0.0, 0.0},
 
  217      {1.807282632950432e-02, 0.0, 0.0},
 
  218      {4.313622546234276e-01, 0.0, 0.0},
 
  219      {7.736112323551237e-01, 0.0, 0.0}},
 
  220     {5.003096218126469e-01,
 
  221      8.590119978942462e-01,
 
  222      7.566174939883307e-01,
 
  223      4.103165690369299e-01,
 
  224      1.257623774795603e-01,
 
  225      1.464860645495425e-02}
 
const char * getName() const 
Returns cubature name. 
int getMaxAccuracy() const 
Returns maximum cubature accuracy. 
const CubatureTemplate * exposeCubatureData() const 
Exposes cubature data. 
CubatureDirectLineGaussJacobi20(const int degree=0)
Constructor. 
Template for the cubature rules used by Intrepid. Cubature template consists of cubature points and c...
Defines GaussJacobi20 integration rules on a line.