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Abstract

The Trilinos Project is an effort to facilitate the design, development, inte-

gration and ongoing support of mathematical software libraries. In particular,

our goal is to develop parallel solver algorithms and libraries within an object-

oriented software framework for the solution of large-scale, complex multi-

physics engineering and scientific applications. Our emphasis is on developing
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robust, scalable algorithms in a software framework, using abstract interfaces

for flexible interoperability of components while providing a full-featured set of

concrete classes that implement all abstract interfaces.

Trilinos uses a two-level software structure designed around collections of

packages. A Trilinos package is an integral unit usually developed by a small

team of experts in a particular algorithms area such as algebraic precondition-

ers, nonlinear solvers, etc. Packages exist underneath the Trilinos top level,

which provides a common look-and-feel, including configuration, documenta-

tion, licensing, and bug-tracking.

Trilinos packages are primarily written in C++, but provide some C and

Fortran user interface support. We provide an open architecture that allows

easy integration with other solver packages and we deliver our software to the

outside community via the Gnu Lesser General Public License (LGPL) [19].

This report provides an overview of Trilinos, discussing the objectives, history,

current development and future plans of the project.
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Nomenclature
Trilinos The name of the project. Also a Greek term which, loosely translated means

“a string of pearls,” meant to evoke an image that each Trilinos package is a

pearl in its own right, but is even more valuable when combined with other

packages.

Package A self-contained collection of software in Trilinos focused on one primary

class of numerical methods. Also a fundamental, integral unit in the Trilinos

framework.

Didasko The tutorial of Trilinos. Offers a quick introduction to several Trilinos pack-

ages. It contains a printable PDF document and a variety of well-commented

browsable examples that illustrate how to use Trilinos.

Didasko contains examples for the following Trilinos packages: Teuchos,

Epetra, EpetraExt, TriUtils, Galeri, AztecOO, IFPACK,ML, NOX, Anasazi, TPe-

tra.

new package A sample Trilinos package containing all of the infrastructure to install a new

package into the Trilinos framework. Contains the basic directory structure, a

collection of sample configuration and build files and a sample “Hello World”

package. Also a website.

Amesos The Direct Sparse Solver Package in Trilinos. The goal of Amesos is to make

AX=B as easy as it sounds, at least for direct methods. Amesos provides

clean and consistent interfaces to several popular third party libraries.

Anasazi An extensible and interoperable framework for large-scale eigenvalue algo-

rithms.The motivation for this framework is to provide a generic interface to a

collection of algorithms for solving large-scale eigenvalue problems.

AztecOO Linear solver package based on preconditioned Krylov methods. A follow-on

to the Aztec solver package [46]. Supports all Aztec interfaces and function-

ality, but also provides significant new functionality.

Belos A Greek term meaning “arrow.” Belos is the next generation of iterative

solvers. Belos solvers are written using “generic” programming techniques.

In other words, Belos is written using TSF abstract interfaces and therefore

has no explicit dependence on any concrete linear algebra library. Instead,

Belos solvers can be used with any concrete linear algebra library that imple-

ments the TSF abstract interfaces.

Claps Claps is a collection of domain decomposition preconditioners and solvers.

Epetra See description under ”Petra”.
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EpetraExt A set of extensions to Epetra. To allow Epetra to remain focused on it’s pri-

mary functionality as a Linear Algebra object support, EpetraExt was created

to maintain additional support for such capabilities as transformations (per-

mutions, sub-block views, etc.), coloring support, partitioning (Zoltan), and

I/O.

Galeri Contains a suite of utilities and classes to generate a variety of (distributed)

linear systems. Galeri’s functionalities are very close to that of the MATLAB’s

gallery() function.

Ifpack Object-oriented algebraic preconditioner, compatible with Epetra and AztecOO.

Supports construction and use of parallel distributed memory precondition-

ers such as overlapping Schwarz domain decomposition, Jacobi scaling and

local Gauss-Seidel relaxations.

Isorropia A repartitioning/rebalancing package intended to assist with redistributing ob-

jects such as matrices and matrix-graphs in a parallel execution setting, to

allow for more efficient computations. Isorropia is primarily an interface to

the Zoltan library, but can be built and used with minimal capability without

Zoltan.

Jpetra See description under ”Petra”.

Kokkos A collection of the handful of sparse and dense kernels that determine much

of the performance for preconditioned Krylov methods. In particular, it con-

tains function class for sparse matrix vector multiplication and triangular solves,

and also for dense kernels that are not part of the standard BLAS. Kokkos is

not intended as a user package, but to be incorporated into other packages

that need high performance kernels.

Komplex Complex linear equation solver using equivalent real formulations [10], built

on top of Epetra and AztecOO.

LOCA Library of continuation algorithms. A package of scalable stability analysis

algorithms (available as part of the NOX nonlinear solver package). When

integrated into an application code, LOCA enables the tracking of solution

branches as a function of system parameters and the direct tracking of bifur-

cation points.

Meros Segregated preconditioning package. Provides scalable block precondition-

ing for problems that couple simultaneous solution variables such as Navier-

Stokes problems.

ML Algebraic multi-level preconditioner package. Provides scalable precondition-

ing capabilities for a variety of problem classes.
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Moertel Supplies capabilities for nonconforming mesh tying and contact formulations

in 2 and 3 dimensions using Mortar methods.

MOOCHO MOOCHO (Multifunctional Object-Oriented arCHitecture for Optimization) is

designed to solve large-scale, equality and inequality nonlinearly constrained,

non-convex optimization problems (i.e. nonlinear programs) using reduced-

space successive quadratic programming (SQP) methods.

NOX A collection of nonlinear solvers, designed to be easily integrated into an

application and used with many different linear solvers.

Petra A Greek term meaning “foundation.” Trilinos has three Petra libraries: Epetra,

Tpetra and Jpetra that provide basic classes for constructing and manipulat-

ing matrix, graph and vector objects. Epetra is the current production version

that is split into two packages, one core and one extensions.

Epetra Current C++ production implementation of the Petra Object Model. The

“E” in Epetra stands for “essential” implying that this version provides

the most important capabilities that are commonly needed by our target

application base. Epetra supports real, double-precision floating point

data only (no single-precision or complex). Epetra avoids explicit use of

some of the more advanced features of C++, including templates and

the Standard Template Library, that can be impediments to portability.

Tpetra The future C++ version of Petra, using templates and other more ad-

vanced features of C++. Tpetra supports arbitrary scalar and ordinal

types, and makes extensive use of advanced C++ features.

Jpetra A Java implementation of Petra, supporting real, double-precision data.

Written in pure Java, it is designed to be byte-code portable and can be

executed across multiple compute nodes.

Pliris An object-oriented interface to a LU solver for dense matrices on parallel

platforms. These matrices are double precision real matrices distributed on

a parallel machine.

PyTrilinos A set of python wrappers for selected Trilinos packages. Allows a python

programmer to dynamically import Trilinos packages into a python script or

the python command-line interpreter, allowing the creation and modification

of Trilinos objects and the execution of Trilinos algorithms, without the need

to constantly recompile.

RTOp RTOp (reduction/transformation operators) provides the basic mechanism for

implementing vector operations in a flexible and efficient manner.
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Rythmos A transient integrator for ordinary differential equations and differential-algebraic

equations with support for explicit, implicit, one-step and multi-step algo-

rithms. Aimed at supporting operator-split algorithms, multi-physics appli-

cations, block linear algebra, and adjoint integration.

Sacado A set of automatic differentiation tools for C++ applications. Provides tem-

plated classes for forward, reverse and Taylor mode automatic differentiation.

Stratimikos Contains a unified set of Thyra-based wrappers to linear solver and precon-

ditioner capabilities in Trilinos. Can also be used for unified testing of linear

solvers and preconditioners.

Teuchos A collection of classes and service software that is useful to almost all Trilinos

packages. Includes reference-counted pointers, parameter lists, templated

interfaces to BLAS, LAPACK and traits for templates.

Thyra A set of interfaces and supporting code that defines basic interoperability

mechanisms between different types of numerical software. The foundation

of all of these interfaces are the mathematical concepts of vectors, vector

spaces, and linear operators. All other interfaces and support software is

built on the basic operator/vector interfaces.

Tpetra See description under ”Petra”.

TriUtils A package of utilities for other Trilinos packages.

WebTrilinos A scientific portal; a web-based environment to use several Trilinos packages

through the web.

1 Background

A core requirement of many engineering and scientific applications is the need to

solve linear and non-linear systems of equations, eigensystems and other related

problems. Thus it is no surprise that any part of the application that solves these

problems is called a “solver.” The exact definition of what specifically constitutes

a solver depends on many factors. However, a good working definition of a solver

is the following: Any piece of software that finds unknown values for some set of

discrete governing equations in an application. Another characteristic of solvers is

that we can often implement them in such a way that they are “general-purpose”,

so that the details of how the discrete problem was formed are not specifically

needed for the solver to work (although information about problem characteristics

can often be vital to robust solutions.)
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General-purpose linear and eigensolvers have been successfully used across a

broad set of applications and computer systems. EISPACK [39], LINPACK [13] and

LAPACK [2] are just a few of the many packages that have made a tremendous im-

pact, providing robust portable solvers to a broad set of applications. More recently

packages such as PETSc [5, 4, 3] and Aztec [46] have provided a large benefit to

applications by giving users access to parallel distributed memory solvers that are

easy-to-use and robust.

Sandia has historically had efforts to develop scalable solver algorithms and soft-

ware. Often this development has been done within the context of a specific appli-

cation code, providing a good robust solver that specifically meets the needs of that

application. Even Aztec, one of the most important general-purpose solvers devel-

oped at Sandia, was developed specifically for MPSalsa [36, 38] and only later

extracted for use with other applications. Unfortunately, even though application-

focused solvers tend to be very robust and can often be made into very effective

general-purpose solvers, the opportunity to re-use the basic set of tools developed

for one solver in the development of another solver becomes very difficult.

The Trilinos Project grew out of this group of established numerical algorithms ef-

forts at Sandia, motivated by a recognition that a modest degree of coordination

among these efforts could have a large positive impact on the quality and usability

of the software we produce and therefore enhance the research, development and

integration of new solver algorithms into applications. With the advent of Trilinos,

the degree of effort required to develop new parallel solvers has been substan-

tially reduced because our common infrastructure provides an excellent starting

point. Furthermore, many applications are standardizing on the Trilinos matrix and

vector classes. As a result, these applications have access to all Trilinos solver

components without any unnecessary interface modifications.

This document provides an overview of the Trilinos project, focusing on the project

philosophy and description, and providing the reader with a summary of the project

in its current state.

2 Introduction

Research efforts in advanced solution algorithms and parallel solver libraries have

historically had a large impact on engineering and scientific computing. Algorithmic

advances increase the range of tractable problems and reduce the cost of solving

existing problems. Well-designed solver libraries provide a mechanism for leverag-

ing solver development across a broad set of applications and minimize the cost of

solver integration. Emphasis is required in both new algorithms and new software
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in order to maximum the impact of our efforts.

The Trilinos project encompasses a variety of efforts that are to some extent self-

contained but at the same time inter-related. The Trilinos design allows individual

packages to grow and mature autonomously to the extent the algorithms and pack-

age developers dictate.

Integration of a package into Trilinos, and what Trilinos can provide to a package,

have multiple possibilities that will be discussed in Section 3. Section 4 discusses

two special collections of Trilinos packages: Petra and TSF. The general definition

of a Trilinos package is presented in Section 6 An overview of current software

research and development is given in Section 7. Finally, this document contains

an appendix, which gives a brief tutorial on object-oriented concepts for readers

who are unfamiliar with the area.

3 Trilinos Design Philosophy

Each Trilinos package is a self-contained, independent piece of software with its

own set of requirements, its own development team and group of users. Because

of this, Trilinos itself is designed to respect the autonomy of packages. Trilinos

offers a variety of ways for a particular package to interact with other Trilinos pack-

ages. It also offers a set of tools that can assist package developers with builds

across multiple platforms, generating documentation and regression testing across

a set of target platforms. At the same time, what a package must do to be called a

Trilinos package is minimal, and varies with each package. The current collection

of Trilinos packages is shown in Figure 1.

3.1 Services Provided by Trilinos

Trilinos provides a variety of services to a developer wanting to integrate a package

into Trilinos. In particular, the following are provided:

• Configuration management: Autoconf [16], Automake [17] and Libtool [21]

provide a robust, full-featured set of tools for building software across a broad

set of platforms (see also the “Goat Book” [51]). Although these tools are not

official standards, they are commonly used in many packages. Nearly all

existing Trilinos packages use Autoconf and Automake. Libtool support will

be added in future releases.

Package developers who are not currently using autotools, but would like to,
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can get a jump start by using a Trilinos package called “new package” (see

below).

Trilinos provides a set of M4 [20] macros that can be used by any other pack-

age that wants to use Autoconf and Automake for configuring and building li-

braries. These macros perform common configuration tasks such as locating

a valid LAPACK [2] library, or checking for a user- defined MPI C compiler.

These macros minimize the amount of redundant effort in using Autotools,

and make it easier to apply a general change to the configure process for all

packages.

• Regression testing: Trilinos provides a variety of regression testing capa-

bilities. Although the test suite is always improving, good coverage testing is

available for the major Trilinos packages. Integrating new tests into Trilinos is

accomplished by creating specially named directories in the CVS repository

and creating scripts that run package tests. These scripts can be executed

manually and are also run as part of the automated regression test harness

(see next item).

• Automatic Testing: Trilinos Packages that configure and build using Auto-

tools can easily utilize the the Trilinos test harness. On a nightly basis, the

test harness builds the most recent versions of Trilinos libraries and runs any

tests that have been integrated into the testharness.

• Portable interface to BLAS and LAPACK: The Basic Linear Algebra Sub-

programs (BLAS) [26, 15, 14] and LAPACK [2] provide a large repository of

robust, high-performance mathematical software for serial and shared mem-

ory parallel dense linear algebra computations. However, the BLAS and LA-

PACK interfaces are Fortran specifications, and the mechanism for calling

Fortran interfaces from C and C++ varies across computing platforms. Epe-

tra (and Teuchos) provide a set of simple, portable interfaces to the BLAS

and LAPACK that provide uniform access to the BLAS and LAPACK across a

broad set of platforms. These interfaces are accessible to other packages.

• Source code repository and other software process tools: Trilinos source

code is maintained in a CVS [18] repository that is accessible via a secure

connection from anywhere on the internet. It is also browsable via a web-

based interface package called Bonsai [43]. Features and bug reports are

tracked using Bugzilla [44], and email lists are maintained for Trilinos as a

whole and for each package. Support for new packages can easily be added.

All tools are accessible from the main Trilinos website [24].

• Quick-start package infrastructure: Via the new package package in Trili-

nos, a new or existing software project can quickly adopt a variety of useful

software processes and tools. new package provides a starting point for:
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– Project organization: Illustrates one way of organizing files for a mathe-

matical software package.

– Autotools: As mentioned above, provides simple working example using

autotools, and a set of M4 macros.

– Automatically generated reference documentation: Shows how to mark

up source code and use Doxygen [48] to produce accurate, extensive

source code documentation.

– Regression testing: Simple regression testing example is part of new package.

– Website: The Trilinos home page [24] contains a new package website

that includes instruction on how to copy and modify the new package

web source for use with a new Trilinos package.

Note:It is worth mentioning that the Trilinos new package package can be

useful independent of Trilinos itself. Like all Trilinos packages, new package

is self-contained, and can be configured and built independently from the rest

of Trilinos. Similarly, the new package website is self-contained and essen-

tially independent from the rest of the Trilinos website.

4 Petra and TSF: Two Special Package

Collections

In order to understand what Trilinos provides beyond the contributions of each Trili-

nos package, we briefly discuss two special collections of Trilinos packages: Petra

and TSF. These two packages collections are complimentary, with TSF packages

providing common abstract application programmer interfaces (APIs) for other Trili-

nos packages and Petra providing common concrete implementations of basic

classes used by most Trilinos packages. Within the Petra collection of packages,

Epetra is the most mature, portable and widely used package. Within the TSF

collection, Thyra provides a lean set of interfaces and TSFExtended provides a

fuller feature set. TSFExtended builds on top of Thyra, i. e. , TSFExtended classes

inherit from Thyra classes.

4.1 Epetra

Matrices, vectors and graphs are basic objects used in most solver algorithms.

Most Trilinos packages interact with these kinds of objects via abstract interfaces

that allow a package to define what services and behaviors are expected from

the objects, without enforcing a specific implementation. However, in order to use
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these packages, some concrete implementation must be selected. Epetra (and

in the future other packages described in Section 7.1) is a collection of concrete

classes that supports the construction and use of vectors, sparse graphs, and

dense and sparse matrices. It provides serial, parallel and distributed memory

capabilities. It uses the BLAS and LAPACK where possible, and as a result has

good performance characteristics.

4.2 Thyra and TSFExtended

Many different algorithms are available to solve a given numerical problem. For

example, there are many algorithms for solving a system of linear equations, and

many solver packages are available to solve linear systems. Which package is

appropriate is a function of many details about the problem being solved and the

platform on which application is being run. However, even though there are many

different solvers, conceptually, from an abstract view, these solvers are providing a

similar capability, and it is advantageous to utilize this abstract view. TSF is a col-

lection of abstract classes that provides an application programmer interface (API)

to perform the most common solver operations. It can provide a single interface

to many different solvers. Furthermore, TSFExtended has powerful compositional

mechanisms that support the light-weight construction of composite objects from

a set of existing objects. As a result, TSF users gain easy access to many solvers

and can bring multiple solvers to bear on a single problem.

5 Common Tools Package: Teuchos

As the number of Trilinos packages grows, we have developed the need for a com-

mon collection of tools that can be leverages across all packages. The Teuchos

package is a relatively recent addition to Trilinos to facilitate collection of the com-

mon tools. In order to retain the autonomy of other Trilinos packages, no package

is required to adopt Teuchos class for internal use. However, a design goal of

Teuchos is robustness and portability such that dependency on Teuchos is not a

practical liability.

Teuchos provides classes and interfaces for:

1. Templated access to BLAS and LAPACK interfaces. Teuchos provides a set

of interfaces that have a single templated parameter for the scalar field. In

cases where the template is of type single, double, complex single or com-

plex double, the user will be linked to standard BLAS and LAPACK functions.

For other data types, we provided generic loops sets for a limited set of key
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kernels (NOTE: Generic support for LAPACK functionality is very limited).

For example, if the user specifies a dense matrix-matrix multiply operation,

the standard GEMM BLAS kernel will be called for the four primary scalar

types. For other data types, Teuchos provides a triple nested loop set that

implements the same functionality in terms of the “+” and “*” operators and

uses scalar traits to define zero and one. If the data type that user passed

in supports “operator+” and “operator*” and has a well-defined concept of

zero, identity and magnitude, this type of loop set with compile and execute

correctly. We have used this mechanism to compute basic matrix and vector

calculations using arbitrary precision arithmetic. This capability can be used

to support interval arithmetic, geometric transformation calculations, integers

and calculations with many more data types.

2. Parameter lists: A parameter list is a collection of key-value pairs that can

be used to communicate with a packages. A parameter can be used to tune

how a package is used, or can provide information back to the user from a

package. For example the pair (“Residual Tolerance”, 1.0E-6) could be used

to specify the tolerance that a package should use for convergence testing in

an iterative process. Similarly, the pair (“Residual Norm”, 9.3245E-7) can be

passed back to the user as the actual computed residual norm.

Although a number of packages in Trilinos use their own implementation of

parameter lists internally, all packages will be able to parse Teuchos lists.

This allows users to utilize the same parameter list constructs across multiple

Trilinos packages.

3. Memory management tools: Classes for aiding in correct allocation and dele-

tion of memory. In particular, a reference counting pointer class that allows

multiple references to a single object, deleting the object after the last refer-

ence is removed. These tools are very helpful in reducing the possibility of

memory leaks in a program.

4. Traits: Traits mechanisms [31] are effective techniques for providing detailed

information about supported generic data types. Teuchos provides three

types of traits: ScalarTraits, OrdinalTraits and PacketTraits. ScalarTraits de-

fines a variety of properties for supported scalar types. A partial list of traits

includes:

• zero (one): The appropriate value for zero (one) for the given scalar

type.

• magnitudetype: The data type that would be used by a norm for the

given scalar type. For example, the magnitude type for double and com-

plex double is double.

• random: Function that produces a single random value of the given

scalar type.
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• Optional machine parameters: Optionally, a scalar type can also have

machine parameters defined. These parameter have a one-to-one match

with the LAPACK LAMCH parameters. A partial list of these parame-

ters includes machine epsilon, arithmetic base, underflow and overflow.

These parameters are important for robust floating point calculations in

many situations, but proper definitions may not be obvious or essential

for non-standard scalar types.

OrdinalTraits provide information for data types such as int. Again zero and

one are defined, as is a descriptive label. Other ordinal traits are not needed

at this point. PacketTraits is used to define the “size” of a packet type. This

trait allows generic use of data transfer algorithms such as distributed data

communications via MPI.

5. Operation Counts: This class provides mechanisms for tracking and report-

ing operation counts, and associating a counting object with one or more

computational objects.

6. Exception handler: Error reporting class for uniform exception handling.

7. Timers: Uniform interface to wall-clock timers.

6 Trilinos Package Interoperability

Mechanisms

As mentioned above, what a package must do to be called a Trilinos package is

minimal, and varies with each package. In this section we list the primary mech-

anisms for a package to become part of Trilinos. Note that each mechanism is

an extension or augmentation of package capabilities, creating connections be-

tween packages. Thus, a package does not need to change its internal structure

to become part of Trilinos.

Mechanism 1: Package Accepts User Data as Epetra Objects

All solver packages require some user data (usually in the form of vectors and

matrices) or require the user to supply the action of an operator on a vector. Ac-

cepting this data in the form of Epetra objects is the first Trilinos interoperability

mechanism. Any package that accepts user data this way immediately becomes

accessible to an application that has built its data using Epetra. We expect every

Trilinos package to implement this mechanism in some way. Since Epetra provides

a variety of ways to extract data from an Epetra object, minimally we expect that
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a package can at least copy data from the user objects that were built using Epe-

tra. More often, a well-designed package can typically encapsulate Epetra objects

and ask for services from the Epetra objects without explicitly copying them. In the

future, as Tpetra matures (and C++ compilers mature), we expect Tpetra to be a

companion package to Epetra, fulfilling a similar role.

Mechanism 2: Package Callable via TSF Interfaces

TSF provides a set of abstract interfaces that can be used to interface to a variety

of solver packages. TSF can accept pre-constructed solver objects, e.g., precon-

ditioners, iterative solvers, etc., by simple encapsulation or it can construct solver

objects using one of a variety of factories. (See Appendix 8 for the definition of a

factory.) Once constructed, a solver object can be further modified by passing it a

parameter list containing a list of key-value pairs that can control solver behavior

when it is trying to solve a problem. For example, the parameter list could specify

a residual tolerance for an iterative solver.

A package is callable via TSF if it implements one or more of the TSF abstract

class interfaces, making it available to TSF users as one of a suite of possible

solver options.

Mechanism 3: Package Can Use Epetra Internally

Another interoperability mechanism available to a package is that of using Epetra

objects as the internal objects for storing vector, matrices, etc. that are seldom

or never seen by the user. In many instances, this mechanism has no practical

advantages. However, in some instances, there can be a saving in storage re-

quirements. Furthermore, by using Epetra objects internally, a package can in turn

use other Trilinos packages to manipulate its own internal objects.

Mechanism 4: Package accesses services via TSF interface

TSF provides an abstract solver interface with access to multiple concrete solvers.

A package can access solver services via TSF and therefore be able to use any

solver that implements the TSF interface. By using TSF to access external objects

such vectors, linear operators and solvers, a package has access to any concrete

implementation of the TSF interfaces. This is beneficial for access to a broad set

of concrete classes, and also minimizes the need for additional abstract interfaces

and the corresponding concrete implementations of these additional abstract inter-

faces.
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Mechanism 5: Package Builds Under Trilinos configure Scripts

Trilinos uses Autoconf [16] and Automake [17] to build libraries and test suites. The

Trilinos directory structure keeps each Trilinos package completely self-contained.

As such, each package is free to use its own configuration and build process. At

the same time, Trilinos has a top-level configure script that traverses the directory

structure invoking package configure scripts, passing on any parameter definitions

from the top level. Similarly, the make process is also recursive.

A package may easily be automatically built from the top-level Trilinos configuration

and make process by copying and modifying the Autoconf and Automake scripts

from another package. The benefit for doing this is that Autoconf and Automake im-

prove the portability of a package across a broad set of platforms. Also, Automake

provides a rich set of targets for building libraries, software distributions, test suites

and installation processes. If a package adopts the Trilinos configuration and build

process, it will be built automatically along with other Trilinos packages.

7 Overview of Current Package

Development

7.1 The Petra Object Model

The Petra class libraries provide a foundation for all Trilinos solver development.

Petra provides object classes for constructing and using parallel, distributed mem-

ory matrices and vectors. Petra exists in multiple forms. Its most basic form is as

an object model [23]. As such, it is an abstract description of a variety of vector,

matrix and supporting classes, along with a description of how these classes inter-

act. There are presently three implementations of the Petra Object Model: Epetra,

Tpetra and Jpetra.

Epetra: Essential Implementation of Petra Object Model

Epetra [?] the current production version of Petra, is written for real-valued double-

precision scalar field data only, and restricts itself to a stable core of the C++ lan-

guage standard. As such, Epetra is very portable and stable, and is accessible to

Fortran and C users. Epetra combines in a single package (i) support for generic

parallel machine descriptions, (ii) extensive use of standard numerical libraries, (iii)

use of object-oriented C++ programming and (iv) parallel data redistribution. The

availability of Epetra has facilitated rapid development of numerous applications

22



7.1 The Petra Object Model Trilinos
TM

Overview

and solvers at Sandia because many of the complicated issues of working on a

parallel distributed memory machine are handled by Epetra.

Application developers can use Epetra to construct and manipulate matrices and

vectors, and then pass these objects to most Trilinos solver components. Further-

more, solver developers can develop many new algorithms relying solely on Epetra

classes to handle the intricacies of parallel execution. Epetra also has extensive

parallel data redistribution capabilities, including an interface to the Zoltan load-

balancing library [12]. Epetra is split into two packages: a core package and a set

of extensions.

Tpetra: Templated C++ Implementation of Petra Object Model

In addition to Epetra, we have started development of a templated version of Petra,

called Tpetra, that implements the scalar and ordinal fields as templated types.

When fully developed, Tpetra will allow matrices and vectors to be composed of

real or complex, and single or double precision scalar values. Furthermore, in

principle, any abstract data type (ADT) can be used as the scalar field type as

long as the ADT supports basic mathematical operations such as addition and

multiplication and inversion. Specifically, we could compute using an interval scalar

field, matrices, integers, etc., without any additional code development in Tpetra.

Tpetra can also use any size integer for indexing. Typically the ordinal field would

be an integral data type such as int or long int. However, any ADT that supports

an indexing capability can be used, including integers in other bases, or cyclic

indexing. Additionally, Tpetra also uses the C++ language standard more fully.

In particular, it utilizes the Standard Template Library (STL) [41], to provide good

algorithmic efficiency with minimal code development.

We are developing Tpetra as a peer library to Epetra. By using partial special-

ization of templates, we are basing Tpetra on established libraries such as the

BLAS [26, 15, 14] and LAPACK [2] and therefore acquire the performance and

robustness of these libraries. Like Epetra, Tpetra is written for generic parallel

distributed memory computers whose nodes are potentially shared memory multi-

processors.

Jpetra: Java Implementation of Petra Object Model

In addition to Tpetra, we are developing a Java implementation of Petra. The pri-

mary design goals of this project are to produce a library that is a high performance,

pure Java implementation of Petra. By restricting ourselves to Java and avoiding

the use of the Java Native Interface (JNI) [42] to link to other libraries, we get the

byte-code portability that Java promises. The fundamental implication of these
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goals is that we cannot rely on BLAS [26, 15, 14], LAPACK [2] or MPI [40] since

they are not written in Java, and we do not use the JNI. As such, we must track the

development of pure Java equivalents of these libraries. Several efforts, including

Ninja [30] and MPJ [8], provide equivalent functionality to the BLAS, LAPACK and

MPI, but are completely written in Java.

We will fully implement Jpetra as a peer library to Epetra. By making extensive

use of Java interfaces, we can create loose dependencies on emerging BLAS,

LAPACK and MPI replacements as they become mature and stable. Recently, sev-

eral research efforts [30, 32] have shown that there is no fundamental performance

bottleneck using Java. Instead, Java compilers and user practices have been the

issue. As a result, Java holds much promise as a high performance computing

language. Java also has native graphical user interfaces (GUI) support. A sig-

nificant part of Jpetra will be the development of GUI tools for visualization and

manipulation of Jpetra objects.

7.2 TSF: The Trilinos Abstract Class Packages

Many different algorithms are available to solve any given numerical problem. For

example, there are many algorithms for solving a system of linear equations, and

many solver packages are available to solve linear systems. Which package is

appropriate is a function of many details about the problem being solved and the

platform on which application is being run. However, even though there are many

different solvers, conceptually, from an abstract view, these solvers are providing a

similar capability, and it is advantageous to utilize this abstract view. TSF is a col-

lection of abstract classes that provides an application programmer interface (API)

to perform the most common solver operations. It can provide a single interface to

many different solvers and has powerful compositional mechanisms that support

the light-weight construction of composite objects from a set of existing objects.

As a result, TSF users gain easy access to many solvers and can bring multiple

solvers to bear on a single problem.

TSF is split into several packages. The most important user-oriented classes are

Thyra and TSFExtended:

1. Thyra: Thyra contains a small set of core classes that are considered essen-

tial to almost any abstract linear algebra interface. The primary user classes

in Thyra are Vector, MultiVector, LinearOp and VectorSpace.

2. TSFExtended: TSFExtended builds on top of Thyra and includes overloaded,

block and composite operators, all of which support powerful abstraction ca-

pabilities. The Meros package relies on TSFExtended to implicitly construct
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sophisticated Schur compliment preconditioners in terms of existing compo-

nent operators with little overhead in time or memory.

Both Thyra and TSFExtended are important because they allow interfacing and

sophisticated use of numerical linear algebra objects without requiring the user or

application to commit to any particular concrete linear algebra library. This ap-

proach allows us to leverage the investment in sophisticated abstract numerical

algorithms across many concrete linear algebra libraries and gives application de-

velopers a single API that provides access to many solver packages.

TSF provides abstract interfaces for vector, matrix, operator and solver objects. In

addition, it has powerful aggregation mechanisms that allow existing TSF objects

to be combined in a variety of ways to create new TSF objects. TSF can be useful

in many situations. For example:

1. Generic Krylov method implementation: If a preconditioned Krylov solver is

implemented using TSF vectors and operators, then any concrete package

that implements the TSF vector and operator interfaces can be used with the

Krylov solver.

2. Generic solver driver: If an application accesses solver services via the TSF

solver interfaces, then any solver that implements the TSF solver interface is

accessible to that application.

3. Aggregate objects to implicitly construct aggregate operators: TSF provides

mechanisms to implicitly construct a matrix of operators, the sum or compo-

sition of two operators, the inverse of an operator, etc. Similar aggregation

mechanisms are available for vectors, matrices and solvers.

7.3 AztecOO: Concrete Preconditioned Iterative

Solvers

AztecOO is an object-oriented follow-on to Aztec [46]. As such, it has all of the

same capabilities as Aztec, but provides a more elegant interface and numerous

functionality extensions. AztecOO specifically solves a linear system AX = B

where A is a linear operator, X is a multivector containing one or more initial

guesses on entry and the corresponding solutions on exit, and B contains the

corresponding right-hand-sides.

AztecOO accepts user matrices and vectors as Epetra objects. The operator A and

any preconditioner, say M ≈ A−1, need not be concrete Epetra objects. Instead,
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AztecOO expects A and M to be Epetra Operator or Epetra RowMatrix objects.

Both Epetra Operator and Epetra RowMatrix are pure virtual classes. Therefore,

any other matrix library can be used to supply A and M , as long as that library can

implement the Epetra Operator or Epetra RowMatrix interfaces, something that is

fairly straight-forward for most linear solver libraries.

AztecOO provides scalings, parallel domain decomposition preconditioners, and a

very robust set of Krylov methods. It runs very efficiently on distributed memory

parallel computers or on serial computers. Also, AztecOO implements the Epe-

tra Operator interface. Therefore, an AztecOO solver object can be used as a

preconditioner for another AztecOO object.

7.4 Belos: Generic Implementation of Krylov

Methods

Belos contains a collection of standard Krylov methods such as conjugate gradi-

ents (CG), GMRES and Bi-CGSTAB. It also contain flexible variants of CG and GM-

RES, and block versions CG and GMRES. The flexible variants allow variable pre-

conditioners to be used, such that the preconditioner at each iteration can change.

Block variants allow the solution of multiple simultaneous right-hand-sides. Block

methods can also be very effective for problems that have just a few small eigen-

values, even if the solution to only a single right-hand-side is needed.

Belos is considered a generic implementation because it relies on TSF interfaces

for access to linear operator, preconditioner and vector objects. Therefore it is not

explicitly tied to any concrete linear algebra library and can in principle be used

with any library that implements the TSF interfaces. In particular, Epetra can be

used since Trilinos provides an Epetra implementation of the TSF interfaces.

7.5 Amesos: Object-oriented Interface to Direct

Solvers

The Amesos package is markedly different than most other Trilinos packages. It is

designed to provide a common interface to a collection of third-party direct sparse

solvers. There are a number of high-quality direct sparse solvers available to the

general public, each of which (i) has a unique interface and (ii) can be especially

suitable for specific uses. Because of this, we provide access to these solvers

through a common interface. Specifically, we provide interfaces to all direct solver

supported by Amesos. These interfaces allow Epetra matrices and vectors to be
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used with each third-party solver. At this time, we provide support for SuperLU (se-

rial), SuperLUDist [27], Kundert’s Sparse solver (from Spice [33]),DSCPack [34],

UMFPack [9] and MUMPS [1].

In addition to providing access to third-party solvers, Amesos provides an abstract

base class that facilitates generic use of a third-party solver once a solver object is

instantiated. This abstract interface is implemented by each Amesos direct solver

class. For example, except for the construction phase (which can be accomplished

generically using a “factory” as described in the Appendix), an instance of a solver

object, whether it be a SuperLU solver instance, DSCPack, etc., can be driven via

the the Amesos base solver interface. This interface allows the user to request

computation of a symbolic factorization, numeric factorization and a solve. How a

specific third-party package is used to implement these can vary. The primary pur-

pose of the Amesos base solver interface is to support efficient reuse of informa-

tion. Specifically, if a sequence of factorizations uses the same nonzero structure

but has different values, the Amesos base solver class can allow efficient reuse of

the structure. Similarly, repeated right-hand-side solves can be done sequentially.

One should note that this fine-grain control does not eliminate simple uses. If the

“solve” method in the Amesos base solver class is called without any previous call

to the numeric factorization, or to neither the symbolic or numeric factorization, the

solver object will be aware of this and perform the necessary preliminary steps for

the call to the solve method to succeed.

7.6 Komplex: Solver Suite for Complex-valued

Linear Systems

Komplex solves complex-valued linear systems using equivalent real-valued formu-

lations of twice the dimension. Given the following complex-valued linear system:

Cw = d, (1)

where C is an m-by-n known complex matrix, d is a known right-hand side and w

is unknown, we can write Equation (1) in its real and imaginary terms,

(A+ iB)(x+ iy) = b+ ic. (2)

Equating the real and imaginary parts of the expanded equation, respectively, gives

rise to four possible 2-by-2 block formulations. We list one of these in Equation (3).

K1 Formulation

(

A −B

B A

)(

x

y

)

=

(

b

c

)

. (3)

27



Trilinos
TM

Overview 7.7 Ifpack: Parallel Algebraic Preconditioners

Although most preconditioning and iterative methods are generally well-defined

for complex-valued systems, with real-valued systems being a special case, most

widely-available solver packages focus exclusively on real-valued systems or treat

complex-valued systems as an afterthought. Therefore, by transforming the complex-

valued system into a real-valued system, we can immediately leverage all of the in-

vestment in real-valued solvers. KomplexOO constructs an equivalent real-valued

formulation for a given complex-valued linear system and then calls AztecOO to

solve the problem, returning the solution back to the user in a form compatible with

the original complex-valued problem. Details of mathematical and practical issues

of Komplex can be found in Day and Heroux [11].

7.7 Ifpack: Parallel Algebraic Preconditioners

Ifpack provides local incomplete factorization preconditioners in a parallel domain

decomposition framework. It accepts user data as Epetra RowMatrix objects (in-

cluding Epetra CrsMatrix, Epetra VbrMatrix and Epetra MsrMatrix objects, since

these classes implement the Epetra RowMatrix interface) and can construct a

large variety of ILU preconditioners. Ifpack preconditioners implement the Epe-

tra Operator interface. Therefore, they can be used as preconditioners for AztecOO.

The current released version of Ifpack provides a relaxed ILUK preconditioner and

incomplete Cholesky with threshold dropping.

7.8 ML: Multi-level Preconditioner Package

ML is a multigrid, or more generally, a multi-level preconditioner package for solving

linear systems from partial differential equation (PDE) discretizations. Although

any linear system can be used with ML, problems that have an underlying PDE

nature have the best chance of successful use of ML.

ML provides several approaches to constructing and solving the multi-level prob-

lem:

1. Algebraic smoothed aggregation approach [50, 49]: The matrix graph is col-

ored to create aggregates (groups) of nodes. These aggregates define a

preliminary projection operator. A final projection operator is created by ap-

plying a smoother to the preliminary operator.

2. Algebraic multigrid for Maxwell’s equations: This approach is intended for

preconditioning linear systems of the form Ax = b, where A = S + M , S is

a discrete form of the operator ∇ × ∇ × E, M is a mass matrix, and E is

the electric field. Such systems arise from discretizations of the eddy current
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approximations to Maxwell’s equations by either edge elements or Yee-type

schemes [6, 52].

The smoother is a specialized distributed relaxation method [6]. This method

explicitly smooths in range(S), smooths on a projected residual equation in

ker(S), and updates the approximate solution.

The prolongation operator is constructed so that ker(S) is properly repre-

sented on each level. In order for ML to build this prolongator, the user must

provide two additional auxiliary operators: a discrete gradient operator, and

a nodal finite element matrix. Both operators are easy to construct and are

often already available in applications. Further details can be found in [6, 7]:

3. Adaptive Grid approach: The original grid is used as the coarse grid and the

adaptive refinements determined the fine grid. Prolongation and restriction

operators are determined using simple interpolation and weighted injection.

4. Two-grid approach: A fine and (very) coarse grid are used. Graph and spatial

coordinates are used, but there is no necessary correlation required between

the two grids.

ML has two modes of operation. In the first mode, ML can be run as a stand-alone

solver. ML provides its own smoothers and iterative methods. In the second mode

of operation, ML can also be used as a preconditioner to iterative methods within

Aztec or AztecOO.

ML is quite flexible with regard to matrix formats. ML accepts user matrix data in its

own format. In this case, ML needs two matrix access functions, the first to return

a matrix row and the second to perform a matrix-vector multiply. ML also accepts

Epetra matrix objects. More information is available in either the ML User’s manual

[45] and at the ML website [47].

7.9 Meros

Meros uses the compositional, aggregation and overloaded operator capabilities

of TSF to provide segregated/block preconditioners for linear systems related to

fully-coupled Navier-Stokes problems. This class of preconditioners exploits the

special properties of these problems to segregate the equations and use multi-level

preconditioners on the matrix sub-blocks. The overall performance and scalability

of these preconditioners approaches that of multigrid for certain types of problems.

Although the present target problems are related to computational fluid dynamics,

Meros itself is purely algebraic. Because of this, other types of applications can

potentially use Meros if a similar underlying physics structure is present.
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7.10 NOX: Nonlinear Solver Package

NOX provides a suite of nonlinear solver methods that can be easily integrated

into an application. Historically, many applications have called linear solvers as

libraries, but have provided their own nonlinear solver software. NOX can be an

improvement because it provides a much larger collection of nonlinear methods,

and can be easily extended as new nonlinear methods are developed.

NOX currently contains basic solvers such as Newton’s method as well as multi-

ple globalizations including line search and trust region algorithms. Line search

algorithms include full step, backtracking (interval halving), polynomial (quadratic

and cubic) and More-Thuente. Directions for the backtracking algorithms include

steepest descent, Newton, quasi-Newton, and Broyden.

NOX does not depend on any particular linear algebra package, making it easy to

install. In order to interface to NOX, the user needs to supply methods that derive

from the NOX Vector and Group abstract classes. The Vector interface supports

basic vector operations such as dot products and vector updates. The Group in-

terface supports non-vector linear algebra functionality and contains methods to

evaluate the function and, optionally, the Jacobian. Complete details are provided

on the NOX website [25].

Although users can provide their own Vector and Group implementation, NOX pro-

vides three implementations of its own: LAPACK, Epetra and PETSc. The LAPACK

interface is an interface to the BLAS/LAPACK library. It is not intended for large-

scale computations, but to serve as an easy-to-understand example of how one

might interface to NOX. The Epetra interface is an interface to Epetra. The PETSc

interface is an interface with the PETSc library.

All NOX solvers are in the NOX::Solver namespace. The solvers are accessed

via the NOX::Solver::Manager. The recommended solver is the NOX LineSearch-

Based solver, which is a basic nonlinear solver based on a line search. Each solver

has a number of options that can be specified, as documented in each class or on

the NOX Parameter Reference Page.

The search directions are in the NOX::Direction namespace and accessed via the

NOX::Direction::Manager. The default search direction for a line-search based

method is the Newton direction.

Several line searches are available, as defined in the NOX::LineSearch, and ac-

cessed via the NOX::LineSearch::Manager class.

Convergence or failure of a given solver method is determined by the status tests
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defined in the NOX::StatusTest namespace. Various status tests may be combined

via the Combo object. Users are free to create additional status tests that derive

from the Generic status test class.

7.11 LOCA: Library of Continuation Algorithms

LOCA is a package of scalable continuation and bifurcation analysis algorithms.

It is designed as an extension to the NOX nonlinear solver package since the

interfacing requirements are a superset of those needed for nonlinear solution.

When integrated into an application code, LOCA enables the tracking of solution

branches as a function of system parameters and the direct tracking of bifurcation

points. It also provides an interface to the Anasazi Eigensolver for obtaining lin-

ear stability information. The algorithms are chosen to work with codes that use

Newton’s method to reach steady solutions and to have minimal additional inter-

facing requirements over the nonlinear solver. Furthermore, they are designed for

scalability to large problems, such as those that arise from discretizations of partial

differential equations, and to run on distributed memory parallel machines [37].

LOCA provides robust parameter continuation algorithms with sophisticated step

size controls for tracking steady solutions or bifurcations. There is also an artificial

parameter homotopy algorithm. The approach in LOCA for locating and tracking

bifurcations begins with augmenting the residual equations defining a steady state

with additional equations that describe the bifurcation [35]. This is done generi-

cally. This augmented system is then sent to the NOX library for solution. Instead

of loading up the Jacobian matrix for the entire augmented system (a task that in-

volves second derivatives and dense matrix rows), bordering algorithms are used

to decompose the linear solve into several solves with smaller matrices. Almost all

of the algorithms just require multiple solves of the Jacobian matrix for the steady

state problem to calculate the Newton updates for the augmented system. This

greatly simplifies the implementation, since this is the linear system solve that an

application code using Newton’s method will have invested in. Only the Hopf track-

ing algorithm requires the solution of a larger matrix, which is the complex matrix

involving the Jacobian matrix and an imaginary multiple of the mass matrix. For

this solve the Komplex package is used. Online documentation is available through

the NOX webpage [25].

7.12 Anasazi: Eigensolver package

Anasazi is an extensible and interoperable framework for large-scale eigenvalue al-

gorithms. The goal of this framework is to provide a generic interface to a collection

of algorithms for solving large-scale eigenvalue problems.
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Anasazi is interoperable because both the matrix and vectors (defining the eigenspace)

are considered to be opaque objects—only knowledge of the matrix and vectors

via elementary operations is necessary. An implementation of Anasazi is accom-

plished via the use of interfaces. Current interfaces available include Epetra, so

any libraries that understand Epetra matrices and vectors (such as AztecOO) may

also be used in conjunction with Anasazi, and an abstract interface to the LOCA

package.

One of the goals of Anasazi is to allow the user the flexibility to specify the data

representation for the matrix and vectors and so leverage any existing software

investment. The algorithms that will be initially available through Anasazi are block

implicitly restarted Arnoldi and Lanczos methods and preconditioned eigensolvers.

These include a locally optimal block preconditioned conjugate gradient iteration

(LOBPCG) for symmetric positive definite generalized eigenvalue problems, and a

restarted preconditioned eigensolver for nonsymmetric eigenvalue problems.

7.13 Future Packages

In addition to the package discussed above, we anticipate the inclusion of numer-

ous new packages in the coming months and years. The Trilinos framework offers

an attractive setting for algorithm developers who want a well-supported software

environment and distribution mechanism, as well as the ability use their software

with other packages. Presently we anticipate incorporating PyTrilinos, a Python

interface to selected Trilinos functionality that allows use of the scripting language

Python to drive Trilinos. We also expect that the dense solver developed for, among

other things, the Linpack benchmark will also become a Trilinos package. A code

for performing the nonlinear solution, continuation, and stability analysis of codes

with fixed-point iterations (such as explicit integration codes), based on the recur-

sive Projection Method, is another solver package under development.

To see a complete list of new packages in the future, please look at the online

version of this overview document, available from the Trilinos website [24].

8 Conclusions

The Trilinos project provides a framework for integrating independent solver pack-

ages, making packages inter-operable and providing a common “look-and-feel” for

Trilinos users. Furthermore, Trilinos provides a collection of useful services for

independent solver developers, making integration of a package into Trilinos at-

tractive to developers. The primary advantages that the Trilinos Project provides
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are:

1. A common core of basic linear algebra classes: We can minimize redundant

work and jumpstart a new parallel application by utilizing Petra class libraries

to construct and manipulate matrix, graph and vector objects.

2. Extensive use of abstract classes, primarily TSF, to define the interaction

between Trilinos packages: By using abstract interfaces in Trilinos packages,

we are not explicitly dependent on Petra classes for functionality. This allows

us to use any concrete matrix and vector software with Trilinos packages,

including PETSc, BLAS, and LAPACK.

3. A collection of common software tools and processes: New packages can be

integrated into Trilinos very easily. Furthermore, if a package does not have

its own well-developed set of software engineering tools and processes, the

Trilinos design makes it easy for a package to incorporate Autotools, bug and

feature tracking, source code control and mail lists.

4. A one-to-many API for applications: Application developers who adopt the

TSF abstract interfaces gain access to many solvers via a single mechanism.

Furthermore, additional third party solvers are easily added as necessary.

5. Solver aggregation capabilities: Via the TSF aggregation capabilities, it is

possible to combine many solvers and bring them to bear on a single prob-

lem.

33



Trilinos
TM

Overview REFERENCES

References

[1] P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, and J. Koster. MUMPS home page.

http://www.enseeiht.fr/lima/apo/MUMPS, 2003.

[2] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du

Croz, A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and

D. Sorensen. LAPACK Users’ Guide. SIAM Pub., Philadelphia, PA, second

edition, 1995.

[3] S. Balay, W. Gropp, L. McInnes, and B. Smith. Efficient management of par-

allelism in object oriented numerical software libraries. In E. Arge, A. M. Bru-

aset, and H. P. Langtangen, editors, Modern Software Tools in Scientific Com-

puting, pages 163–202. Birkhauser Press, 1997.

[4] S. Balay, W. Gropp, L. McInnes, and B. Smith. PETSc 2.0 users manual.

Technical Report ANL-95/11 - Revision 2.0.22, Argonne National Laboratory,

1998.

[5] S. Balay, W. Gropp, L. McInnes, and B. Smith. PETSc home page.

http://www.mcs.anl.gov/petsc, 1998.

[6] P. B. Bochev, C.J. Garasi, J. J. Hu, A. C. Robinson, and R. S. Tuminaro. An

improved algebraic multigrid method for solving Maxwell’s equations. SIAM J.

Sci. Comput., 25(2), 2003.

[7] P. B. Bochev, J. J. Hu, A. C. Robinson, and R. S. Tuminaro. Towards robust

3D Z-pinch simulations: discretization and fast solvers for magnetic diffusion

in heterogeneous conductors. Electronic Transactions on Numerical Analysis,

15, 2003.

[8] B. Carpenter, V. Getov, G. Judd, A. Skjellum, and G. Fox. MPJ: MPI-like

message passing for Java. Concurrency: Pract. Exper., 12(11):1019–1038,

September 2000.

[9] Tim Davis. UMFPACK home page. http://www.cise.ufl.edu/research/sparse/umfpack,

2003.

[10] David Day and Michael A. Heroux. Solving complex-valued linear systems via

equivalent real formulations. SIAM J. Sci. Comput., 23(2):480–498, 2001.

[11] David Day and Michael A. Heroux. Solving complex-valued linear systems via

equivalent real formulations. SIAM J. Sci. Comput., 23(2):480–498, 2001.

34



REFERENCES Trilinos
TM

Overview

[12] K. D. Devine, B. A. Hendrickson, E. G. Boman, M. M. St. John, and

C. Vaughan. Zoltan: A dynamic load-balancing library for parallel applications

– user’s guide. Technical Report SAND99-1377, Sandia National Laborato-

ries, Albuquerque, NM, 1999.

[13] J. J. Dongarra, J. Bunch, C. Moler, and G. Stewart. LINPACK Users’ Guide.

SIAM Pub., 1979.

[14] Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Iain Duff. A set of

level 3 basic linear algebra subprograms. ACM Transactions on Mathematical

Software, 16(1):1–17, March 1990.

[15] J.J. Dongarra, J. DuCroz, S. Hammarling, and R. Hanson. An extended set of

Fortran basic linear algebra subprograms. ACM Transactions on Mathemati-

cal Software, 14, 1988.

[16] Free Software Foundation. Autoconf Home Page.

http://www.gnu.org/software/autoconf, 2004.

[17] Free Software Foundation. Automake Home Page.

http://www.gnu.org/software/automake, 2004.

[18] Free Software Foundation. Gnu CVS Home Page.

http://www.gnu.org/software/cvs, 2004.

[19] Free Software Foundation. Gnu license home page.

http://www.gnu.org/licenses/licenses.html, 2004.

[20] Free Software Foundation. Gnu m4 home page.

http://www.gnu.org/software/m4, 2004.

[21] Free Software Foundation. Libtool Home Page.

http://www.gnu.org/software/libtool, 2004.

[22] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design

Patterns, Elements of Reusable Object Oriented Software. Addison-Wesley,

1994.

[23] M. A. Heroux, R. J. Hoekstra, and A. B. Williams. An object model for paral-

lel numerical linear algebra computations. Technical report, Sandia National

Laboratories, 2004. In preparation.

[24] Michael A. Heroux. Trilinos home page. http://trilinos.sandia.gov, 2004.

[25] Tamara G. Kolda and Roger P. Pawlowski. Nox home page.

http://software.sandia.gov/nox, 2004.

35



Trilinos
TM

Overview REFERENCES

[26] C. Lawson, R. Hanson, D. Kincaid, and F. Krogh. Basic linear algebra sub-

programs for Fortran usage. ACM Transactions on Mathematical Software, 5,

1979.

[27] Xiaoye Li and James Demmel. SuperLU home page. http://crd.lbl.gov/ xi-

aoye/SuperLU/, 2003.

[28] Scott Meyers. Effective C++. Addison-Wesley, 1998.

[29] Scott Meyers. Effective STL. Addison-Wesley, 2001.

[30] J. E. Moreira, S. P. Midkiff, M. Gupta, P. V. Artigas, P. Wu, and G. Almasi. The

NINJA project. Communications of the ACM, 44(10), October 2001.

[31] Nathan C Myers. Traits: a new and useful template technique. C++ Report,

June 1995.

[32] R. Pozo and B. Miller. SciMark 2.0. http://math.nist.gov/scimark2/, 2003.

[33] T. Quarles, D. Pederson, R. Newton, A. Sangiovanni-

Vincentelli, and Christopher Wayne. SPICE home page.

http://bwrc.eecs.berkeley.edu/Classes/IcBook/SPICE, 2003.

[34] Padma Raghavan. DSCPACK home page. http://www.cse.psu.edu/ ragha-

van/Dscpack, 2003.

[35] A. G. Salinger, N. M. Bou-Rabee, R. P. Pawlowski, E. D. Wilkes, E. A. Bur-

roughs, R. B. Lehoucq, and L. A. Romero. LOCA: A library of continuation

algorithms - Theroy and implementation manual. Technical report, Sandia

National Laboratories, Albuquerque, New Mexico 87185, 2001. SAND 2002-

0396.

[36] A. G Salinger, K. D. Devine, G. L. Hennigan, H. K. Moffat, S. A Hutchinson,

and J. N. Shadid. MPSalsa: A finite element computer program for reacting

flow problems part 2 - user’s guide. Technical Report SAND96–2331, Sandia

National Laboratories, 1996.

[37] A. G. Salinger, R. B. Lehoucq, R. P. Pawlowski, and J. N. Shadid. Com-

putational bifurcation and stability studies of the 8:1 thermal cavity problem.

Internat. J. Numer. Meth. Fluids, 40(8):1059–1073, 2002.

[38] John N. Shadid, Harry K. Moffat, Scott A. Hutchinson, Gary L. Hennigan,

Karen D. Devine, and Andrew G. Salinger. MPSalsa: A finite element com-

puter program for reacting flow problems part 1 - theoretical development.

Technical Report SAND95–2752, Sandia National Laboratories, 1995.

36



REFERENCES Trilinos
TM

Overview

[39] B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow, Y. Ikebe, V. C. Klema,

and C. B. Moler. Matrix Eigensystem Routines – EISPACK Guide, volume 6

of Lecture Notes in Computer Science. Springer–Verlag, New York, second

edition, 1976.

[40] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI-The

Complete Reference, Volume 1, The MPI core. The MIT Press, 1998.

[41] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, 2000.

[42] Sun Microsystems. Java Native Interface.

http://java.sun.com/products/jdk/1.2/docs/guide/jni, 2003.

[43] The Mozilla Organization. Mozilla Bonsai Home Page.

http://www.mozilla.org/bonsai.html, 2004.

[44] The Mozilla Organization. Mozilla Bugzilla Home Page.

http://www.mozilla.org/projects/bugzilla, 2004.

[45] C. Tong and R. Tuminaro. ML2.0 Smoothed Aggregation User’s Guide. Tech-

nical Report SAND2001-8028, Sandia National Laboratories, Albq, NM, 2000.

[46] Ray S. Tuminaro, Michael A. Heroux, Scott. A. Hutchinson, and J. N. Sha-

did. Official Aztec User’s Guide, Version 2.1. Sandia National Laboratories,

Albuquerque, NM 87185, 1999.

[47] Ray S. Tuminaro and Jonathan Hu. Ml home page.

http://www.cs.sandia.gov/ tuminaro/ML Description.html, 2004.

[48] Dimitri van Heesch. Doxygen home page. http://www.doxygen.org, 2004.

[49] P. Vanek, M. Brezina, and J. Mandel. Convergence of Algebraic Multigrid

Based on Smoothed Aggregation. Technical Report 126, UCD/CCM, Denver,

CO, 1998.

[50] P. Vanek, J. Mandel, and M. Brezina. Algebraic Multigrid Based on Smoothed

Aggregation for Second and Fourth Order Problems. Computing, 56:179–196,

1996.

[51] G. Vaughan, B. Elliston, T. Tromey, and I. Taylor. Gnu Autoconf, Automake,

and Libtool. New Riders, 2000.

[52] K. Yee. Numerical solution of initial boundary value problems involving

Maxwell’s equations in isotropic media. IEEE Trans. Antennas and Propa-

gation, 16:302–307, 1966.

37



Trilinos
TM

Overview REFERENCES

38



A Brief Overview of Some Object-Oriented Concepts Trilinos
TM

Overview

A Brief Overview of Some Object-Oriented

Concepts

Much of the discussion in this document assumes some familiarity with object-

oriented concepts and terminology. We realize that some readers may not be very

familiar with these topics. Therefore, we provide this appendix to cover some of

the basic topics, as we understand them and use them.

Object-oriented Programming

We use the term object-oriented programming (OOP) to refer to a philosophy of

software engineering where procedures (called methods or functions) and data

that are logically related are kept together in a single logical unit called a class.

Although it is not always clear which data and methods belong in a given class, we

can generally agree on basic associations. As an example, one obvious class for a

solver framework is a Vector. For our purposes, we consider a vector object to have

finite dimension and a basis. Therefore, it contains data that can be indexed. Some

obvious vector operations are norms, dot products and vector updates. Vectors can

also be multiplied by a linear operator, or more specifically by a matrix. However,

we commonly put this kind of method in the matrix class because matrices tend to

be more complicated objects and writing the method in the matrix class is easier.

Some of the strengths of OOP are a strong emphasis on the interaction of objects

with each other, that is, on interfaces between classes. By focusing on interfaces

we get a variety of benefits. First, a well-designed interface prescribes what should

be done by a piece of software, not how it should be done. This fact, combined

with the fact that a class owns its data, allows great flexibility in how methods are

implemented. Even more importantly, once software is in use, OOP techniques

give us flexibility to change the implementation of a class without changing the

interface. Since a user only works with the interface (methods) of a class, we can

change the implementation of a class without requiring any major change in the

user code.

We have used this flexibility within the Trilinos Project. In particular, earlier versions

of Petra classes were based on code from Aztec, which allowed us to get working

versions of Petra very quickly. Over time we replace the Aztec code with imple-

mentations that offered more flexibility and features. However, the overall design

of many of the Petra classes has remained fundamentally the same.
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Some Key OOP Terms

Throughout this paper we have used a number of terms repeatedly, and sometimes

interchangeably. In this section, we define these terms. Note that these terms (and

many more) are discussed in great detail in books by Stroustrup [41], Gamma et.

al. [22], Meyers [28, 29] and many others.

Virtual Function, Pure Virtual Function

Virtual functions (also called virtual methods) are functions defined on a base class

that can be redefined in any derived class. When a derived class redefines a

method from its base class, it is said to override that method. A pure virtual function

is a virtual function that is declared but not implemented in the base class. Pure

virtual functions must be overridden by derived classes, while “non-pure” virtual

functions need not be overridden.

Abstract Class, Pure Virtual Class, Interface, Virtual Class

These four terms are used to describe classes that are incomplete, and can not

be constructed directly. The first term is used to describe any class that has one

or more pure virtual methods. The second two terms describe classes that have

no executable code. These classes contain method prototypes only and cannot

be constructed explicitly. The term pure virtual class tends to be associated with

C++ programming while interface is formally defined in Java. We tend to use these

two terms interchangeably. A virtual class, like an abstract class, is one which

has some pure virtual methods (prototypes without code), but has some methods

that have a default implementation (sometimes these implementations are written

in terms of other virtual methods). These classes cannot be constructed explicitly

either. All four of these class types must be inherited by a concrete class that

implements the virtual methods, therefore implementing the interface.

Concrete Class, Implementation

In order for an abstract class to be used, some other class must provide an imple-

mentation of the undeveloped methods of the abstract class. This implementation

class, often called a concrete class, provides an implementation of the abstract

class interface. Generally the term concrete class can be used to describe any

class that can be constructed, i.e., any class which contains no pure virtual meth-

ods.
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Base Class, Derived Class, Specialization

A concrete class that implements an abstract class is said to be a derived class

while the abstract class is called a base class. Unrelated to abstract and concrete

classes, we also mention another form of derived class called specialization. One

class is a specialization of another (base) class if it is a subset (or special case) of

the base class. For example, given an existing matrix class, a vector class can be

derived by constructing a matrix object with one column. In other cases a derived

class extends the base class, providing methods from the base class as well as

methods not in the base class.

Base Class, Polymorphism, Factory

An abstract class, and in fact any class containing virtual methods, can be im-

plemented by multiple concrete classes. In this situation each concrete class can

be used interchangeably to behave as an instance of the base class. This inter-

changeability of the concrete classes that implement a common base is referred to

as polymorphism. For convenience, and to hide the details of concrete class con-

struction, we often develop a function or class called a factory that can construct

one of a number of concrete classes that have a common base class. Once an

instance of the concrete class is constructed, the object is returned as an object of

the base class type. In this way, the calling code (the scope in which the object is

to be used) need not know what the concrete type of the object actually is.

Multiple Inheritance

Multiple inheritance describes the case where a single concrete class inherits more

than one base class. This feature of the C++ language is utilized by several classes

in the Epetra package. For example, Epetra CrsMatrix is a concrete compressed

row sparse matrix class that implements the abstract interface Epetra RowMatrix

as well as Epetra DistObject, the interface specification for import and export op-

erations in distributed-memory parallel environments. An instance of a class that

implements multiple base classes may be passed as an argument where any of

those base classes is expected.

Templates, Traits

C++ classes (and stand-alone functions) may be written in terms of one or more

generic type parameters. Such classes are called templates. An example could be

a matrix class that may be instantiated with any type of coefficient data – double-

precision floating-point numbers, integers, etc. In a templated class, the imple-

mentation code doesn’t know the type of the template parameter. In many cases
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this is a severe limitation, for instance if a templated vector class is to call through

to BLAS functions it is necessary to distinguish between calling ’dnrm2’, ’snrm2’

or ’dznrm2’. Another example is the need to associate different MPI data-types

with template parameters. This limitation can be addressed using a template tech-

nique called traits [31]. Traits are essentially a way of associating a set of types

and methods with the specific type used to instantiate the template. This is accom-

plished by using a secondary template which has a specialization for each possible

type that is to be supported. This secondary template is only used internally, and

is not exposed to the end user.
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