10 #ifndef IFPACK2_DETAILS_CHEBYSHEVKERNEL_DEF_HPP
11 #define IFPACK2_DETAILS_CHEBYSHEVKERNEL_DEF_HPP
13 #include "Tpetra_CrsMatrix.hpp"
14 #include "Tpetra_MultiVector.hpp"
15 #include "Tpetra_Operator.hpp"
16 #include "Tpetra_Vector.hpp"
17 #include "Tpetra_Export_decl.hpp"
18 #include "Tpetra_Import_decl.hpp"
19 #include "Kokkos_ArithTraits.hpp"
20 #include "Teuchos_Assert.hpp"
21 #include <type_traits>
22 #include "KokkosSparse_spmv_impl.hpp"
32 template <
class WVector,
42 static_assert(static_cast<int>(WVector::rank) == 1,
43 "WVector must be a rank 1 View.");
44 static_assert(static_cast<int>(DVector::rank) == 1,
45 "DVector must be a rank 1 View.");
46 static_assert(static_cast<int>(BVector::rank) == 1,
47 "BVector must be a rank 1 View.");
48 static_assert(static_cast<int>(XVector_colMap::rank) == 1,
49 "XVector_colMap must be a rank 1 View.");
50 static_assert(static_cast<int>(XVector_domMap::rank) == 1,
51 "XVector_domMap must be a rank 1 View.");
53 using execution_space =
typename AMatrix::execution_space;
54 using LO =
typename AMatrix::non_const_ordinal_type;
55 using value_type =
typename AMatrix::non_const_value_type;
56 using team_policy =
typename Kokkos::TeamPolicy<execution_space>;
57 using team_member =
typename team_policy::member_type;
58 using ATV = Kokkos::ArithTraits<value_type>;
65 XVector_colMap m_x_colMap;
66 XVector_domMap m_x_domMap;
69 const LO rows_per_team;
76 const XVector_colMap& m_x_colMap_,
77 const XVector_domMap& m_x_domMap_,
79 const int rows_per_team_)
85 , m_x_colMap(m_x_colMap_)
86 , m_x_domMap(m_x_domMap_)
88 , rows_per_team(rows_per_team_) {
89 const size_t numRows = m_A.numRows();
90 const size_t numCols = m_A.numCols();
99 KOKKOS_INLINE_FUNCTION
100 void operator()(
const team_member& dev)
const {
101 using residual_value_type =
typename BVector::non_const_value_type;
102 using KAT = Kokkos::ArithTraits<residual_value_type>;
104 Kokkos::parallel_for(Kokkos::TeamThreadRange(dev, 0, rows_per_team),
105 [&](
const LO& loop) {
107 static_cast<LO
>(dev.league_rank()) * rows_per_team + loop;
108 if (lclRow >= m_A.numRows()) {
111 const KokkosSparse::SparseRowViewConst<AMatrix> A_row = m_A.rowConst(lclRow);
112 const LO row_length =
static_cast<LO
>(A_row.length);
113 residual_value_type A_x = KAT::zero();
115 Kokkos::parallel_reduce(
116 Kokkos::ThreadVectorRange(dev, row_length),
117 [&](
const LO iEntry, residual_value_type& lsum) {
118 const auto A_val = A_row.value(iEntry);
119 lsum += A_val * m_x_colMap(A_row.colidx(iEntry));
123 Kokkos::single(Kokkos::PerThread(dev),
125 const auto alpha_D_res =
126 alpha * m_d(lclRow) * (m_b(lclRow) - A_x);
128 m_w(lclRow) = beta * m_w(lclRow) + alpha_D_res;
130 m_w(lclRow) = alpha_D_res;
133 m_x_domMap(lclRow) += m_w(lclRow);
140 template <
class WVector,
144 class XVector_colMap,
145 class XVector_domMap,
148 chebyshev_kernel_vector(
const Scalar& alpha,
153 const XVector_colMap& x_colMap,
154 const XVector_domMap& x_domMap,
156 const bool do_X_update) {
157 using execution_space =
typename AMatrix::execution_space;
159 if (A.numRows() == 0) {
164 int vector_length = -1;
165 int64_t rows_per_thread = -1;
167 const int64_t rows_per_team = KokkosSparse::Impl::spmv_launch_parameters<execution_space>(A.numRows(), A.nnz(), rows_per_thread, team_size, vector_length);
168 int64_t worksets = (b.extent(0) + rows_per_team - 1) / rows_per_team;
170 using Kokkos::Dynamic;
171 using Kokkos::Schedule;
172 using Kokkos::Static;
173 using Kokkos::TeamPolicy;
174 using policy_type_dynamic = TeamPolicy<execution_space, Schedule<Dynamic> >;
175 using policy_type_static = TeamPolicy<execution_space, Schedule<Static> >;
176 const char kernel_label[] =
"chebyshev_kernel_vector";
177 policy_type_dynamic policyDynamic(1, 1);
178 policy_type_static policyStatic(1, 1);
180 policyDynamic = policy_type_dynamic(worksets, Kokkos::AUTO, vector_length);
181 policyStatic = policy_type_static(worksets, Kokkos::AUTO, vector_length);
183 policyDynamic = policy_type_dynamic(worksets, team_size, vector_length);
184 policyStatic = policy_type_static(worksets, team_size, vector_length);
188 using w_vec_type =
typename WVector::non_const_type;
189 using d_vec_type =
typename DVector::const_type;
190 using b_vec_type =
typename BVector::const_type;
191 using matrix_type = AMatrix;
192 using x_colMap_vec_type =
typename XVector_colMap::const_type;
193 using x_domMap_vec_type =
typename XVector_domMap::non_const_type;
194 using scalar_type =
typename Kokkos::ArithTraits<Scalar>::val_type;
196 if (beta == Kokkos::ArithTraits<Scalar>::zero()) {
197 constexpr
bool use_beta =
false;
200 ChebyshevKernelVectorFunctor<w_vec_type, d_vec_type,
201 b_vec_type, matrix_type,
202 x_colMap_vec_type, x_domMap_vec_type,
206 functor_type func(alpha, w, d, b, A, x_colMap, x_domMap, beta, rows_per_team);
207 if (A.nnz() > 10000000)
208 Kokkos::parallel_for(kernel_label, policyDynamic, func);
210 Kokkos::parallel_for(kernel_label, policyStatic, func);
213 ChebyshevKernelVectorFunctor<w_vec_type, d_vec_type,
214 b_vec_type, matrix_type,
215 x_colMap_vec_type, x_domMap_vec_type,
219 functor_type func(alpha, w, d, b, A, x_colMap, x_domMap, beta, rows_per_team);
220 if (A.nnz() > 10000000)
221 Kokkos::parallel_for(kernel_label, policyDynamic, func);
223 Kokkos::parallel_for(kernel_label, policyStatic, func);
226 constexpr
bool use_beta =
true;
229 ChebyshevKernelVectorFunctor<w_vec_type, d_vec_type,
230 b_vec_type, matrix_type,
231 x_colMap_vec_type, x_domMap_vec_type,
235 functor_type func(alpha, w, d, b, A, x_colMap, x_domMap, beta, rows_per_team);
236 if (A.nnz() > 10000000)
237 Kokkos::parallel_for(kernel_label, policyDynamic, func);
239 Kokkos::parallel_for(kernel_label, policyStatic, func);
242 ChebyshevKernelVectorFunctor<w_vec_type, d_vec_type,
243 b_vec_type, matrix_type,
244 x_colMap_vec_type, x_domMap_vec_type,
248 functor_type func(alpha, w, d, b, A, x_colMap, x_domMap, beta, rows_per_team);
249 if (A.nnz() > 10000000)
250 Kokkos::parallel_for(kernel_label, policyDynamic, func);
252 Kokkos::parallel_for(kernel_label, policyStatic, func);
259 template <
class TpetraOperatorType>
260 ChebyshevKernel<TpetraOperatorType>::
262 const bool useNativeSpMV)
263 : useNativeSpMV_(useNativeSpMV) {
267 template <
class TpetraOperatorType>
268 void ChebyshevKernel<TpetraOperatorType>::
270 if (A_op_.get() != A.
get()) {
274 V1_ = std::unique_ptr<multivector_type>(
nullptr);
276 using Teuchos::rcp_dynamic_cast;
278 rcp_dynamic_cast<
const crs_matrix_type>(A);
280 A_crs_ = Teuchos::null;
281 imp_ = Teuchos::null;
282 exp_ = Teuchos::null;
287 auto G = A_crs->getCrsGraph();
288 imp_ = G->getImporter();
289 exp_ = G->getExporter();
290 if (!imp_.is_null()) {
291 if (X_colMap_.get() ==
nullptr ||
292 !X_colMap_->getMap()->isSameAs(*(imp_->getTargetMap()))) {
293 X_colMap_ = std::unique_ptr<vector_type>(
new vector_type(imp_->getTargetMap()));
301 template <
class TpetraOperatorType>
302 void ChebyshevKernel<TpetraOperatorType>::
303 compute(multivector_type& W,
314 W_vec_ = W.getVectorNonConst(0);
315 B_vec_ = B.getVectorNonConst(0);
316 X_vec_ = X.getVectorNonConst(0);
318 fusedCase(*W_vec_, alpha, D_inv, *B_vec_, *A_crs_, *X_vec_, beta);
321 unfusedCase(W, alpha, D_inv, B, *A_op_, X, beta);
325 template <
class TpetraOperatorType>
326 typename ChebyshevKernel<TpetraOperatorType>::vector_type&
327 ChebyshevKernel<TpetraOperatorType>::
328 importVector(vector_type& X_domMap) {
329 if (imp_.is_null()) {
332 X_colMap_->doImport(X_domMap, *imp_, Tpetra::REPLACE);
337 template <
class TpetraOperatorType>
338 bool ChebyshevKernel<TpetraOperatorType>::
339 canFuse(
const multivector_type& B)
const {
345 return B.getNumVectors() == size_t(1) &&
350 template <
class TpetraOperatorType>
351 void ChebyshevKernel<TpetraOperatorType>::
352 unfusedCase(multivector_type& W,
356 const operator_type& A,
360 if (V1_.get() ==
nullptr) {
361 using MV = multivector_type;
362 const size_t numVecs = B.getNumVectors();
363 V1_ = std::unique_ptr<MV>(
new MV(B.getMap(), numVecs));
368 Tpetra::deep_copy(*V1_, B);
372 W.elementWiseMultiply(alpha, D_inv, *V1_, beta);
375 X.update(STS::one(), W, STS::one());
378 template <
class TpetraOperatorType>
379 void ChebyshevKernel<TpetraOperatorType>::
380 fusedCase(vector_type& W,
384 const crs_matrix_type& A,
387 vector_type& X_colMap = importVector(X);
389 using Impl::chebyshev_kernel_vector;
392 auto A_lcl = A.getLocalMatrixDevice();
394 auto Dinv_lcl = Kokkos::subview(D_inv.getLocalViewDevice(Tpetra::Access::ReadOnly), Kokkos::ALL(), 0);
395 auto B_lcl = Kokkos::subview(B.getLocalViewDevice(Tpetra::Access::ReadOnly), Kokkos::ALL(), 0);
396 auto X_domMap_lcl = Kokkos::subview(X.getLocalViewDevice(Tpetra::Access::ReadWrite), Kokkos::ALL(), 0);
397 auto X_colMap_lcl = Kokkos::subview(X_colMap.getLocalViewDevice(Tpetra::Access::ReadOnly), Kokkos::ALL(), 0);
399 const bool do_X_update = !imp_.is_null();
400 if (beta == STS::zero()) {
401 auto W_lcl = Kokkos::subview(W.getLocalViewDevice(Tpetra::Access::OverwriteAll), Kokkos::ALL(), 0);
402 chebyshev_kernel_vector(alpha, W_lcl, Dinv_lcl,
404 X_colMap_lcl, X_domMap_lcl,
408 auto W_lcl = Kokkos::subview(W.getLocalViewDevice(Tpetra::Access::ReadWrite), Kokkos::ALL(), 0);
409 chebyshev_kernel_vector(alpha, W_lcl, Dinv_lcl,
411 X_colMap_lcl, X_domMap_lcl,
416 X.update(STS::one(), W, STS::one());
422 #define IFPACK2_DETAILS_CHEBYSHEVKERNEL_INSTANT(SC, LO, GO, NT) \
423 template class Ifpack2::Details::ChebyshevKernel<Tpetra::Operator<SC, LO, GO, NT> >;
425 #endif // IFPACK2_DETAILS_CHEBYSHEVKERNEL_DEF_HPP
TEUCHOS_DEPRECATED RCP< T > rcp(T *p, Dealloc_T dealloc, bool owns_mem)
Functor for computing W := alpha * D * (B - A*X) + beta * W and X := X+W.
Definition: Ifpack2_Details_ChebyshevKernel_def.hpp:41
#define TEUCHOS_ASSERT(assertion_test)