#include <Tpetra_Map.hpp>
#include <Tpetra_Core.hpp>
#include <Tpetra_Vector.hpp>
#include <Tpetra_CrsMatrix.hpp>
#include <Teuchos_Comm.hpp>
#include <Teuchos_CommHelpers.hpp>
#include <Teuchos_DefaultComm.hpp>
#include "Teuchos_StandardCatchMacros.hpp"
#include "BelosTpetraTestFramework.hpp"
template <typename ScalarType>
int run(int argc, char *argv[]) {
  using ST = typename Tpetra::Vector<ScalarType>::scalar_type;
  using LO = typename Tpetra::Vector<>::local_ordinal_type;
  using GO = typename Tpetra::Vector<>::global_ordinal_type;
  using NT = typename Tpetra::Vector<>::node_type;
  using OP = typename Tpetra::Operator<ST,LO,GO,NT>;
  using MV = typename Tpetra::MultiVector<ST,LO,GO,NT>;
  using tmap_t       = Tpetra::Map<LO,GO,NT>;
  using tcrsmatrix_t = Tpetra::CrsMatrix<ST,LO,GO,NT>;
  const auto Comm = Tpetra::getDefaultComm();
  const int MyPID = Comm->getRank();
  bool verbose = false;
  bool success = true;
  try {
    bool proc_verbose = false;
    bool debug = false;
    int frequency = -1;        
    int numrhs = 1;            
    int maxiters = -1;         
    int maxsubspace = 250;     
    int recycle = 50;          
    int maxrestarts = 15;      
    std::string filename("sherman5.hb");
    std::string ortho("IMGS");
    MT tol = 1.0e-8;           
    cmdp.
setOption(
"verbose",
"quiet",&verbose,
"Print messages and results.");
 
    cmdp.
setOption(
"debug",
"nodebug",&debug,
"Print debugging information from the solver.");
 
    cmdp.
setOption(
"frequency",&frequency,
"Solvers frequency for printing residuals (#iters).");
 
    cmdp.
setOption(
"filename",&filename,
"Filename for test matrix.  Acceptable file extensions: *.hb,*.mtx,*.triU,*.triS");
 
    cmdp.
setOption(
"tol",&tol,
"Relative residual tolerance used by GMRES solver.");
 
    cmdp.
setOption(
"num-rhs",&numrhs,
"Number of right-hand sides to be solved for.");
 
    cmdp.
setOption(
"max-iters",&maxiters,
"Maximum number of iterations per linear system (-1 = adapted to problem/block size).");
 
    cmdp.
setOption(
"max-subspace",&maxsubspace,
"Maximum number of vectors in search space (including recycle space).");
 
    cmdp.
setOption(
"recycle",&recycle,
"Number of vectors in recycle space.");
 
    cmdp.
setOption(
"max-cycles",&maxrestarts,
"Maximum number of cycles allowed for GCRO-DR solver.");
 
    cmdp.
setOption(
"ortho-type",&ortho,
"Orthogonalization type. Must be one of DGKS, ICGS, IMGS.");
 
      return -1;
    }
    if (!verbose)
      frequency = -1;  
    proc_verbose = ( verbose && (MyPID==0) );
    if (proc_verbose) {
    }
    
    Belos::Tpetra::HarwellBoeingReader<tcrsmatrix_t> reader( Comm );
    RCP<tcrsmatrix_t> A = reader.readFromFile( filename );
    RCP<const tmap_t> Map = A->getDomainMap();
    
    RCP<MV> B, X;
    X = 
rcp( 
new MV(Map,numrhs) );
 
    MVT::MvRandom( *X );
    B = 
rcp( 
new MV(Map,numrhs) );
 
    OPT::Apply( *A, *X, *B );
    MVT::MvInit( *X, 0.0 );
    
    
    const int NumGlobalElements = B->getGlobalLength();
    if (maxiters == -1)
      maxiters = NumGlobalElements - 1; 
    ParameterList belosList;
    belosList.set( "Num Blocks", maxsubspace);        
    belosList.set( "Maximum Iterations", maxiters );  
    belosList.set( "Maximum Restarts", maxrestarts ); 
    belosList.set( "Convergence Tolerance", tol );    
    belosList.set( "Num Recycled Blocks", recycle );  
    belosList.set( "Orthogonalization", ortho );      
    if (verbose) {
      if (frequency > 0)
        belosList.set( "Output Frequency", frequency );
    }
    if (debug) {
    }
    belosList.set( "Verbosity", verbosity );
    
    if (set == false) {
      if (proc_verbose)
        std::cout << std::endl << "ERROR:  Belos::LinearProblem failed to set up correctly!" << std::endl;
      return -1;
    }
    
    
    
    
    RCP< Belos::SolverManager<ST,MV,OP> > newSolver
    
    if (proc_verbose) {
      std::cout << std::endl << std::endl;
      std::cout << "Dimension of matrix: " << NumGlobalElements << std::endl;
      std::cout << "Number of right-hand sides: " << numrhs << std::endl;
      std::cout << "Max number of restarts allowed: " << maxrestarts << std::endl;
      std::cout << "Max number of iterations per restart cycle: " << maxiters << std::endl;
      std::cout << "Relative residual tolerance: " << tol << std::endl;
      std::cout << std::endl;
    }
    
    
    int numIters = newSolver->getNumIters();
    std::cout << "Number of iterations performed for this solve: " << numIters << std::endl;
    
    bool badRes = false;
    std::vector<ST> actual_resids( numrhs );
    std::vector<ST> rhs_norm( numrhs );
    MV resid(Map, numrhs);
    OPT::Apply( *A, *X, resid );
    MVT::MvAddMv( -1.0, resid, 1.0, *B, resid );
    MVT::MvNorm( resid, actual_resids );
    MVT::MvNorm( *B, rhs_norm );
    if (proc_verbose) {
      std::cout<< "---------- Actual Residuals (normalized) ----------"<<std::endl<<std::endl;
      for ( int i=0; i<numrhs; i++) {
        ST actRes = actual_resids[i]/rhs_norm[i];
        std::cout<<"Problem "<<i<<" : \t"<< actRes <<std::endl;
        if (actRes > tol) badRes = true;
      }
    }
      success = false;
      if (proc_verbose)
        std::cout << std::endl << "ERROR:  Belos did not converge!" << std::endl;
    } else {
      success = true;
      if (proc_verbose)
        std::cout << std::endl << "SUCCESS:  Belos converged!" << std::endl;
    }
  }
  return success ? EXIT_SUCCESS : EXIT_FAILURE;
  }
int main(int argc, char *argv[]) {
  
  return run<double>(argc,argv);
  
}