Amesos2 - Direct Sparse Solver Interfaces  Version of the Day
Amesos2_KLU2_def.hpp
Go to the documentation of this file.
1 // @HEADER
2 // *****************************************************************************
3 // Amesos2: Templated Direct Sparse Solver Package
4 //
5 // Copyright 2011 NTESS and the Amesos2 contributors.
6 // SPDX-License-Identifier: BSD-3-Clause
7 // *****************************************************************************
8 // @HEADER
9 
18 #ifndef AMESOS2_KLU2_DEF_HPP
19 #define AMESOS2_KLU2_DEF_HPP
20 
21 #include <Teuchos_Tuple.hpp>
22 #include <Teuchos_ParameterList.hpp>
23 #include <Teuchos_StandardParameterEntryValidators.hpp>
24 
26 #include "Amesos2_KLU2_decl.hpp"
27 
28 namespace Amesos2 {
29 
30 
31 template <class Matrix, class Vector>
33  Teuchos::RCP<const Matrix> A,
34  Teuchos::RCP<Vector> X,
35  Teuchos::RCP<const Vector> B )
36  : SolverCore<Amesos2::KLU2,Matrix,Vector>(A, X, B)
37  , transFlag_(0)
38  , is_contiguous_(true)
39  , use_gather_(true)
40 {
41  ::KLU2::klu_defaults<klu2_dtype, local_ordinal_type> (&(data_.common_)) ;
42  data_.symbolic_ = NULL;
43  data_.numeric_ = NULL;
44 
45  // Override some default options
46  // TODO: use data_ here to init
47 }
48 
49 
50 template <class Matrix, class Vector>
52 {
53  /* Free KLU2 data_types
54  * - Matrices
55  * - Vectors
56  * - Other data
57  */
58  if (data_.symbolic_ != NULL)
59  ::KLU2::klu_free_symbolic<klu2_dtype, local_ordinal_type>
60  (&(data_.symbolic_), &(data_.common_)) ;
61  if (data_.numeric_ != NULL)
62  ::KLU2::klu_free_numeric<klu2_dtype, local_ordinal_type>
63  (&(data_.numeric_), &(data_.common_)) ;
64 
65  // Storage is initialized in numericFactorization_impl()
66  //if ( data_.A.Store != NULL ){
67  // destoy
68  //}
69 
70  // only root allocated these SuperMatrices.
71  //if ( data_.L.Store != NULL ){ // will only be true for this->root_
72  // destroy ..
73  //}
74 }
75 
76 template <class Matrix, class Vector>
77 bool
79  return (this->root_ && (this->matrixA_->getComm()->getSize() == 1) && is_contiguous_);
80 }
81 
82 template<class Matrix, class Vector>
83 int
85 {
86  /* TODO: Define what it means for KLU2
87  */
88 #ifdef HAVE_AMESOS2_TIMERS
89  Teuchos::TimeMonitor preOrderTimer(this->timers_.preOrderTime_);
90 #endif
91 
92  return(0);
93 }
94 
95 
96 template <class Matrix, class Vector>
97 int
99 {
100  if (data_.symbolic_ != NULL) {
101  ::KLU2::klu_free_symbolic<klu2_dtype, local_ordinal_type>
102  (&(data_.symbolic_), &(data_.common_)) ;
103  }
104 
105  if ( single_proc_optimization() ) {
106  host_ordinal_type_array host_row_ptr_view;
107  host_ordinal_type_array host_cols_view;
108  this->matrixA_->returnRowPtr_kokkos_view(host_row_ptr_view);
109  this->matrixA_->returnColInd_kokkos_view(host_cols_view);
110  data_.symbolic_ = ::KLU2::klu_analyze<klu2_dtype, local_ordinal_type>
111  ((local_ordinal_type)this->globalNumCols_, host_row_ptr_view.data(),
112  host_cols_view.data(), &(data_.common_)) ;
113  }
114  else
115  {
116  data_.symbolic_ = ::KLU2::klu_analyze<klu2_dtype, local_ordinal_type>
117  ((local_ordinal_type)this->globalNumCols_, host_col_ptr_view_.data(),
118  host_rows_view_.data(), &(data_.common_)) ;
119 
120  } //end single_process_optim_check = false
121 
122  return(0);
123 }
124 
125 
126 template <class Matrix, class Vector>
127 int
129 {
130  using Teuchos::as;
131 
132  // Cleanup old L and U matrices if we are not reusing a symbolic
133  // factorization. Stores and other data will be allocated in gstrf.
134  // Only rank 0 has valid pointers, TODO: for KLU2
135 
136  int info = 0;
137  if ( this->root_ ) {
138 
139  { // Do factorization
140 #ifdef HAVE_AMESOS2_TIMERS
141  Teuchos::TimeMonitor numFactTimer(this->timers_.numFactTime_);
142 #endif
143 
144  if (data_.numeric_ != NULL) {
145  ::KLU2::klu_free_numeric<klu2_dtype, local_ordinal_type>
146  (&(data_.numeric_), &(data_.common_));
147  }
148 
149  if ( single_proc_optimization() ) {
150  host_ordinal_type_array host_row_ptr_view;
151  host_ordinal_type_array host_cols_view;
152  this->matrixA_->returnRowPtr_kokkos_view(host_row_ptr_view);
153  this->matrixA_->returnColInd_kokkos_view(host_cols_view);
154  this->matrixA_->returnValues_kokkos_view(host_nzvals_view_);
155  klu2_dtype * pValues = function_map::convert_scalar(host_nzvals_view_.data());
156  data_.numeric_ = ::KLU2::klu_factor<klu2_dtype, local_ordinal_type>
157  (host_row_ptr_view.data(), host_cols_view.data(), pValues,
158  data_.symbolic_, &(data_.common_));
159  }
160  else {
161  klu2_dtype * pValues = function_map::convert_scalar(host_nzvals_view_.data());
162  data_.numeric_ = ::KLU2::klu_factor<klu2_dtype, local_ordinal_type>
163  (host_col_ptr_view_.data(), host_rows_view_.data(), pValues,
164  data_.symbolic_, &(data_.common_));
165  } //end single_process_optim_check = false
166 
167  // To have a test which confirms a throw, we need MPI to throw on all the
168  // ranks. So we delay and broadcast first. Others throws in Amesos2 which
169  // happen on just the root rank would also have the same problem if we
170  // tested them but we decided to fix just this one for the present. This
171  // is the only error/throw we currently have a unit test for.
172  if(data_.numeric_ == nullptr) {
173  info = 1;
174  }
175 
176  // This is set after numeric factorization complete as pivoting can be used;
177  // In this case, a discrepancy between symbolic and numeric nnz total can occur.
178  if(info == 0) { // skip if error code so we don't segfault - will throw
179  this->setNnzLU( as<size_t>((data_.numeric_)->lnz) + as<size_t>((data_.numeric_)->unz) );
180  }
181  } // end scope
182 
183  } // end this->root_
184 
185  /* All processes should have the same error code */
186  Teuchos::broadcast(*(this->matrixA_->getComm()), 0, &info);
187 
188  TEUCHOS_TEST_FOR_EXCEPTION(info > 0, std::runtime_error,
189  "KLU2 numeric factorization failed(info="+std::to_string(info)+")");
190 
191  return(info);
192 }
193 
194 template <class Matrix, class Vector>
195 int
197  const Teuchos::Ptr<MultiVecAdapter<Vector> > X,
198  const Teuchos::Ptr<const MultiVecAdapter<Vector> > B) const
199 {
200  using Teuchos::as;
201  int ierr = 0; // returned error code
202 
203  const global_size_type ld_rhs = this->root_ ? X->getGlobalLength() : 0;
204  const size_t nrhs = X->getGlobalNumVectors();
205 
206  bool bDidAssignX;
207  bool bDidAssignB;
208  bool use_gather = use_gather_; // user param
209  use_gather = (use_gather && this->matrixA_->getComm()->getSize() > 1); // only with multiple MPIs
210  use_gather = (use_gather && (std::is_same<vector_scalar_type, float>::value ||
211  std::is_same<vector_scalar_type, double>::value)); // only for double or float vectors
212  {
213 #ifdef HAVE_AMESOS2_TIMERS
214  Teuchos::TimeMonitor mvConvTimer(this->timers_.vecConvTime_);
215 #endif
216  const bool initialize_data = true;
217  const bool do_not_initialize_data = false;
218  if ( single_proc_optimization() && nrhs == 1 ) {
219  // no msp creation
220  bDidAssignB = Util::get_1d_copy_helper_kokkos_view<MultiVecAdapter<Vector>,
221  host_solve_array_t>::do_get(initialize_data, B, bValues_, as<size_t>(ld_rhs));
222 
223  bDidAssignX = Util::get_1d_copy_helper_kokkos_view<MultiVecAdapter<Vector>,
224  host_solve_array_t>::do_get(do_not_initialize_data, X, xValues_, as<size_t>(ld_rhs));
225  }
226  else {
227  if (use_gather) {
228  int rval = B->gather(bValues_, this->perm_g2l, this->recvCountRows, this->recvDisplRows,
229  (is_contiguous_ == true) ? ROOTED : CONTIGUOUS_AND_ROOTED);
230  if (rval == 0) {
231  X->gather(xValues_, this->perm_g2l, this->recvCountRows, this->recvDisplRows,
232  (is_contiguous_ == true) ? ROOTED : CONTIGUOUS_AND_ROOTED);
233  bDidAssignB = true; // TODO : find when we can avoid deep-copy
234  bDidAssignX = false; // TODO : find when we can avoid scatter
235  } else {
236  use_gather = false;
237  }
238  }
239  if (!use_gather) {
240  bDidAssignB = Util::get_1d_copy_helper_kokkos_view<MultiVecAdapter<Vector>,
241  host_solve_array_t>::do_get(initialize_data, B, bValues_,
242  as<size_t>(ld_rhs),
243  (is_contiguous_ == true) ? ROOTED : CONTIGUOUS_AND_ROOTED,
244  this->rowIndexBase_);
245  // see Amesos2_Tacho_def.hpp for an explanation of why we 'get' X
246  bDidAssignX = Util::get_1d_copy_helper_kokkos_view<MultiVecAdapter<Vector>,
247  host_solve_array_t>::do_get(do_not_initialize_data, X, xValues_,
248  as<size_t>(ld_rhs),
249  (is_contiguous_ == true) ? ROOTED : CONTIGUOUS_AND_ROOTED,
250  this->rowIndexBase_);
251  }
252 
253  // klu_tsolve is going to put the solution x into the input b.
254  // Copy b to x then solve in x.
255  // We do not want to solve in b, then copy to x, because if b was assigned
256  // then the solve will change b permanently and mess up the next test cycle.
257  // However if b was actually a copy (bDidAssignB = false) then we can avoid
258  // this deep_copy and just assign xValues_ = bValues_.
259  if(bDidAssignB) {
260  Kokkos::deep_copy(xValues_, bValues_); // need deep_copy or solve will change adapter's b memory which should never happen
261  }
262  else {
263  xValues_ = bValues_; // safe because bValues_ does not point straight to adapter's memory space
264  }
265  }
266  }
267 
268  klu2_dtype * pxValues = function_map::convert_scalar(xValues_.data());
269  klu2_dtype * pbValues = function_map::convert_scalar(bValues_.data());
270 
271  // can be null for non root
272  if( this->root_) {
273  TEUCHOS_TEST_FOR_EXCEPTION(pbValues == nullptr,
274  std::runtime_error, "Amesos2 Runtime Error: b_vector returned null ");
275 
276  TEUCHOS_TEST_FOR_EXCEPTION(pxValues == nullptr,
277  std::runtime_error, "Amesos2 Runtime Error: x_vector returned null ");
278  }
279 
280  if ( single_proc_optimization() && nrhs == 1 ) {
281 #ifdef HAVE_AMESOS2_TIMERS
282  Teuchos::TimeMonitor solveTimer(this->timers_.solveTime_);
283 #endif
284 
285  // For this case, Crs matrix raw pointers were used, so the non-transpose default solve
286  // is actually the transpose solve as klu_solve expects Ccs matrix pointers
287  // Thus, if the transFlag_ is true, the non-transpose solve should be used
288  if (transFlag_ == 0)
289  {
290  ::KLU2::klu_tsolve2<klu2_dtype, local_ordinal_type>
291  (data_.symbolic_, data_.numeric_,
292  (local_ordinal_type)this->globalNumCols_,
293  (local_ordinal_type)nrhs,
294  pbValues, pxValues, &(data_.common_)) ;
295  }
296  else {
297  ::KLU2::klu_solve2<klu2_dtype, local_ordinal_type>
298  (data_.symbolic_, data_.numeric_,
299  (local_ordinal_type)this->globalNumCols_,
300  (local_ordinal_type)nrhs,
301  pbValues, pxValues, &(data_.common_)) ;
302  }
303 
304  /* All processes should have the same error code */
305  // Teuchos::broadcast(*(this->getComm()), 0, &ierr);
306 
307  } // end single_process_optim_check && nrhs == 1
308  else // single proc optimizations but nrhs > 1,
309  // or distributed over processes case
310  {
311  if ( this->root_ ) {
312 #ifdef HAVE_AMESOS2_TIMERS
313  Teuchos::TimeMonitor solveTimer(this->timers_.solveTime_);
314 #endif
315  if (transFlag_ == 0)
316  {
317  // For this case, Crs matrix raw pointers were used, so the non-transpose default solve
318  // is actually the transpose solve as klu_solve expects Ccs matrix pointers
319  // Thus, if the transFlag_ is true, the non-transpose solve should be used
320  if ( single_proc_optimization() ) {
321  ::KLU2::klu_tsolve<klu2_dtype, local_ordinal_type>
322  (data_.symbolic_, data_.numeric_,
323  (local_ordinal_type)this->globalNumCols_,
324  (local_ordinal_type)nrhs,
325  pxValues, &(data_.common_)) ;
326  }
327  else {
328  ::KLU2::klu_solve<klu2_dtype, local_ordinal_type>
329  (data_.symbolic_, data_.numeric_,
330  (local_ordinal_type)this->globalNumCols_,
331  (local_ordinal_type)nrhs,
332  pxValues, &(data_.common_)) ;
333  }
334  }
335  else
336  {
337  // For this case, Crs matrix raw pointers were used, so the non-transpose default solve
338  // is actually the transpose solve as klu_solve expects Ccs matrix pointers
339  // Thus, if the transFlag_ is true, the non- transpose solve should be used
340  if ( single_proc_optimization() ) {
341  ::KLU2::klu_solve<klu2_dtype, local_ordinal_type>
342  (data_.symbolic_, data_.numeric_,
343  (local_ordinal_type)this->globalNumCols_,
344  (local_ordinal_type)nrhs,
345  pxValues, &(data_.common_)) ;
346  }
347  else {
348  ::KLU2::klu_tsolve<klu2_dtype, local_ordinal_type>
349  (data_.symbolic_, data_.numeric_,
350  (local_ordinal_type)this->globalNumCols_,
351  (local_ordinal_type)nrhs,
352  pxValues, &(data_.common_)) ;
353  }
354  }
355  } // end root_
356  } //end else
357 
358  // if bDidAssignX, then we solved straight to the adapter's X memory space without
359  // requiring additional memory allocation, so the x data is already in place.
360  if(!bDidAssignX) {
361 #ifdef HAVE_AMESOS2_TIMERS
362  Teuchos::TimeMonitor redistTimer( this->timers_.vecRedistTime_ );
363 #endif
364  if (use_gather) {
365  int rval = X->scatter(xValues_, this->perm_g2l, this->recvCountRows, this->recvDisplRows,
366  (is_contiguous_ == true) ? ROOTED : CONTIGUOUS_AND_ROOTED);
367  if (rval != 0) use_gather = false;
368  }
369  if (!use_gather) {
370  Util::put_1d_data_helper_kokkos_view<
371  MultiVecAdapter<Vector>,host_solve_array_t>::do_put(X, xValues_,
372  as<size_t>(ld_rhs),
373  (is_contiguous_ == true) ? ROOTED : CONTIGUOUS_AND_ROOTED,
374  this->rowIndexBase_);
375  }
376  }
377  return(ierr);
378 }
379 
380 
381 template <class Matrix, class Vector>
382 bool
384 {
385  // The KLU2 factorization routines can handle square as well as
386  // rectangular matrices, but KLU2 can only apply the solve routines to
387  // square matrices, so we check the matrix for squareness.
388  return( this->matrixA_->getGlobalNumRows() == this->matrixA_->getGlobalNumCols() );
389 }
390 
391 
392 template <class Matrix, class Vector>
393 void
394 KLU2<Matrix,Vector>::setParameters_impl(const Teuchos::RCP<Teuchos::ParameterList> & parameterList )
395 {
396  using Teuchos::RCP;
397  using Teuchos::getIntegralValue;
398  using Teuchos::ParameterEntryValidator;
399 
400  RCP<const Teuchos::ParameterList> valid_params = getValidParameters_impl();
401 
402  transFlag_ = this->control_.useTranspose_ ? 1: 0;
403  // The KLU2 transpose option can override the Amesos2 option
404  if( parameterList->isParameter("Trans") ){
405  RCP<const ParameterEntryValidator> trans_validator = valid_params->getEntry("Trans").validator();
406  parameterList->getEntry("Trans").setValidator(trans_validator);
407 
408  transFlag_ = getIntegralValue<int>(*parameterList, "Trans");
409  }
410 
411  if( parameterList->isParameter("IsContiguous") ){
412  is_contiguous_ = parameterList->get<bool>("IsContiguous");
413  }
414  if( parameterList->isParameter("UseCustomGather") ){
415  use_gather_ = parameterList->get<bool>("UseCustomGather");
416  }
417 }
418 
419 
420 template <class Matrix, class Vector>
421 Teuchos::RCP<const Teuchos::ParameterList>
423 {
424  using std::string;
425  using Teuchos::tuple;
426  using Teuchos::ParameterList;
427  using Teuchos::setStringToIntegralParameter;
428 
429  static Teuchos::RCP<const Teuchos::ParameterList> valid_params;
430 
431  if( is_null(valid_params) )
432  {
433  Teuchos::RCP<Teuchos::ParameterList> pl = Teuchos::parameterList();
434 
435  pl->set("Equil", true, "Whether to equilibrate the system before solve, does nothing now");
436  pl->set("IsContiguous", true, "Whether GIDs contiguous");
437  pl->set("UseCustomGather", true, "Whether to use new matrix-gather routine");
438 
439  setStringToIntegralParameter<int>("Trans", "NOTRANS",
440  "Solve for the transpose system or not",
441  tuple<string>("NOTRANS","TRANS","CONJ"),
442  tuple<string>("Solve with transpose",
443  "Do not solve with transpose",
444  "Solve with the conjugate transpose"),
445  tuple<int>(0, 1, 2),
446  pl.getRawPtr());
447  valid_params = pl;
448  }
449 
450  return valid_params;
451 }
452 
453 
454 template <class Matrix, class Vector>
455 bool
457 {
458  using Teuchos::as;
459 #ifdef HAVE_AMESOS2_TIMERS
460  Teuchos::TimeMonitor convTimer(this->timers_.mtxConvTime_);
461 #endif
462 
463  if(current_phase == SOLVE)return(false);
464 
465  if ( single_proc_optimization() ) {
466  // Do nothing in this case - Crs raw pointers will be used
467  }
468  else
469  {
470  // Only the root image needs storage allocated
471  if( this->root_ ) {
472  if (host_nzvals_view_.extent(0) != this->globalNumNonZeros_)
473  Kokkos::resize(host_nzvals_view_, this->globalNumNonZeros_);
474  if (host_rows_view_.extent(0) != this->globalNumNonZeros_)
475  Kokkos::resize(host_rows_view_, this->globalNumNonZeros_);
476  if (host_col_ptr_view_.extent(0) != (this->globalNumRows_ + 1))
477  Kokkos::resize(host_col_ptr_view_, this->globalNumRows_ + 1);
478  }
479  local_ordinal_type nnz_ret = -1;
480  bool use_gather = use_gather_; // user param
481  use_gather = (use_gather && this->matrixA_->getComm()->getSize() > 1); // only with multiple MPIs
482  use_gather = (use_gather && (std::is_same<scalar_type, float>::value || std::is_same<scalar_type, double>::value)); // only for double or float
483  {
484 #ifdef HAVE_AMESOS2_TIMERS
485  Teuchos::TimeMonitor mtxRedistTimer( this->timers_.mtxRedistTime_ );
486 #endif
487  if (use_gather) {
488  bool column_major = true;
489  if (!is_contiguous_) {
490  auto contig_mat = this->matrixA_->reindex(this->contig_rowmap_, this->contig_colmap_, current_phase);
491  nnz_ret = contig_mat->gather(host_nzvals_view_, host_rows_view_, host_col_ptr_view_, this->perm_g2l, this->recvCountRows, this->recvDisplRows, this->recvCounts, this->recvDispls,
492  this->transpose_map, this->nzvals_t, column_major, current_phase);
493  } else {
494  nnz_ret = this->matrixA_->gather(host_nzvals_view_, host_rows_view_, host_col_ptr_view_, this->perm_g2l, this->recvCountRows, this->recvDisplRows, this->recvCounts, this->recvDispls,
495  this->transpose_map, this->nzvals_t, column_major, current_phase);
496  }
497  // gather failed (e.g., not implemened for KokkosCrsMatrix)
498  // in case of the failure, it falls back to the original "do_get"
499  if (nnz_ret < 0) use_gather = false;
500  }
501  if (!use_gather) {
503  MatrixAdapter<Matrix>,host_value_type_array,host_ordinal_type_array,host_ordinal_type_array>
504  ::do_get(this->matrixA_.ptr(), host_nzvals_view_, host_rows_view_, host_col_ptr_view_, nnz_ret,
505  (is_contiguous_ == true) ? ROOTED : CONTIGUOUS_AND_ROOTED,
506  ARBITRARY,
507  this->rowIndexBase_);
508  }
509  }
510 
511  // gather return the total nnz_ret on every MPI process
512  if (use_gather || this->root_) {
513  TEUCHOS_TEST_FOR_EXCEPTION( nnz_ret != as<local_ordinal_type>(this->globalNumNonZeros_),
514  std::runtime_error,
515  "Amesos2_KLU2 loadA_impl: Did not get the expected number of non-zero vals("
516  +std::to_string(nnz_ret)+" vs "+std::to_string(this->globalNumNonZeros_)+")");
517  }
518  } //end else single_process_optim_check = false
519 
520  return true;
521 }
522 
523 
524 template<class Matrix, class Vector>
525 const char* KLU2<Matrix,Vector>::name = "KLU2";
526 
527 
528 } // end namespace Amesos2
529 
530 #endif // AMESOS2_KLU2_DEF_HPP
Amesos2::SolverCore: A templated interface for interaction with third-party direct sparse solvers...
Definition: Amesos2_SolverCore_decl.hpp:71
KLU2(Teuchos::RCP< const Matrix > A, Teuchos::RCP< Vector > X, Teuchos::RCP< const Vector > B)
Initialize from Teuchos::RCP.
Definition: Amesos2_KLU2_def.hpp:32
A generic helper class for getting a CCS representation of a Matrix.
Definition: Amesos2_Util.hpp:618
int solve_impl(const Teuchos::Ptr< MultiVecAdapter< Vector > > X, const Teuchos::Ptr< const MultiVecAdapter< Vector > > B) const
KLU2 specific solve.
Definition: Amesos2_KLU2_def.hpp:196
EPhase
Used to indicate a phase in the direct solution.
Definition: Amesos2_TypeDecl.hpp:31
Amesos2 KLU2 declarations.
bool loadA_impl(EPhase current_phase)
Reads matrix data into internal structures.
Definition: Amesos2_KLU2_def.hpp:456
~KLU2()
Destructor.
Definition: Amesos2_KLU2_def.hpp:51
void setParameters_impl(const Teuchos::RCP< Teuchos::ParameterList > &parameterList)
Definition: Amesos2_KLU2_def.hpp:394
int symbolicFactorization_impl()
Perform symbolic factorization of the matrix using KLU2.
Definition: Amesos2_KLU2_def.hpp:98
int preOrdering_impl()
Performs pre-ordering on the matrix to increase efficiency.
Definition: Amesos2_KLU2_def.hpp:84
bool matrixShapeOK_impl() const
Determines whether the shape of the matrix is OK for this solver.
Definition: Amesos2_KLU2_def.hpp:383
A Matrix adapter interface for Amesos2.
Definition: Amesos2_MatrixAdapter_decl.hpp:42
int numericFactorization_impl()
KLU2 specific numeric factorization.
Definition: Amesos2_KLU2_def.hpp:128
Amesos2 interface to the KLU2 package.
Definition: Amesos2_KLU2_decl.hpp:38
bool single_proc_optimization() const
can we optimize size_type and ordinal_type for straight pass through, also check that is_contiguous_ ...
Definition: Amesos2_KLU2_def.hpp:78
Teuchos::RCP< const Teuchos::ParameterList > getValidParameters_impl() const
Definition: Amesos2_KLU2_def.hpp:422
A templated MultiVector class adapter for Amesos2.
Definition: Amesos2_MultiVecAdapter_decl.hpp:142