54 #include "Teuchos_oblackholestream.hpp" 
   55 #include "Teuchos_RCP.hpp" 
   56 #include "Teuchos_RefCountPtr.hpp" 
   57 #include "Teuchos_GlobalMPISession.hpp" 
   59 using namespace Intrepid;
 
   64 long double evalQuad(std::vector<int> power, 
int dimension, 
int order, 
 
   65                      std::vector<EIntrepidBurkardt> rule,
 
   66                      std::vector<EIntrepidGrowth> growth) {
 
   74   int size = lineCub.getNumPoints();
 
   77   lineCub.getCubature(cubPoints,cubWeights);
 
   83     for (
int i=0; i<dimension; i++) {
 
   84       Q *= powl(cubPoints(mid,i),(
long double)power[i]);
 
   88   for (
int i=0; i<mid; i++) {
 
   89     long double value1 = cubWeights(i);
 
   90     long double value2 = cubWeights(size-i-1);
 
   91     for (
int j=0; j<dimension; j++) {
 
   92       value1 *= powl(cubPoints(i,j),(
long double)power[j]);
 
   93       value2 *= powl(cubPoints(size-i-1,j),(
long double)power[j]);
 
  100 long double evalInt(
int dimension, std::vector<int> power, 
 
  101                     std::vector<EIntrepidBurkardt> rule) {
 
  104   for (
int i=0; i<dimension; i++) {
 
  105     if (rule[i]==BURK_CLENSHAWCURTIS||rule[i]==BURK_FEJER2||
 
  106         rule[i]==BURK_LEGENDRE||rule[i]==BURK_PATTERSON || 
 
  107         rule[i]==BURK_TRAPEZOIDAL) {
 
  111         I *= 2.0/((
long double)power[i]+1.0);
 
  113     else if (rule[i]==BURK_LAGUERRE) {
 
  114       I *= tgammal((
long double)(power[i]+1));
 
  116     else if (rule[i]==BURK_CHEBYSHEV1) {
 
  117       long double bot, top;
 
  120         for (
int j=2;j<=power[i];j+=2) {
 
  121           top *= (
long double)(j-1);
 
  122           bot *= (
long double)j;
 
  130     else if (rule[i]==BURK_CHEBYSHEV2) {
 
  131       long double bot, top;
 
  134       for (
int j=2;j<=power[i];j+=2) {
 
  135         top *= (
long double)(j-1);
 
  136         bot *= (
long double)j;
 
  138       bot *= (
long double)(power[i]+2);
 
  145     else if (rule[i]==BURK_HERMITE||rule[i]==BURK_GENZKEISTER) {
 
  150         long double value = 1.0;
 
  151         if ((power[i]-1)>=1) {
 
  152           int n_copy = power[i]-1;
 
  154             value  *= (
long double)n_copy;
 
  158         I *= value*sqrt(M_PI)/powl(2.0,(
long double)power[i]/2.0);
 
  165 int main(
int argc, 
char *argv[]) {
 
  167   Teuchos::GlobalMPISession mpiSession(&argc, &argv);
 
  171   int iprint     = argc - 1;
 
  172   Teuchos::RCP<std::ostream> outStream;
 
  173   Teuchos::oblackholestream bhs; 
 
  175     outStream = Teuchos::rcp(&std::cout, 
false);
 
  177     outStream = Teuchos::rcp(&bhs, 
false);
 
  180   Teuchos::oblackholestream oldFormatState;
 
  181   oldFormatState.copyfmt(std::cout);
 
  184   << 
"===============================================================================\n" \
 
  186   << 
"|                         Unit Test (CubatureTensorSorted)                    |\n" \
 
  188   << 
"|     1) Computing integrals of monomials in 2D                               |\n" \
 
  190   << 
"|  Questions? Contact  Drew Kouri (dpkouri@sandia.gov) or                     |\n" \
 
  191   << 
"|                      Denis Ridzal (dridzal@sandia.gov).                     |\n" \
 
  193   << 
"|  Intrepid's website: http://trilinos.sandia.gov/packages/intrepid           |\n" \
 
  194   << 
"|  Trilinos website:   http://trilinos.sandia.gov                             |\n" \
 
  196   << 
"===============================================================================\n"\
 
  197   << 
"| TEST 22: integrals of monomials in 2D - Anisotropic but no growth rules     |\n"\
 
  198   << 
"===============================================================================\n";
 
  204   long double reltol      = 1.0e+02*INTREPID_TOL;
 
  206   long double analyticInt = 0;
 
  207   long double testInt     = 0;
 
  209   std::vector<int> power(2,0);
 
  210   std::vector<EIntrepidBurkardt> rule1(2,BURK_CLENSHAWCURTIS);
 
  211   std::vector<EIntrepidGrowth> growth1(2,GROWTH_FULLEXP);
 
  213   *outStream << 
"\nIntegrals of monomials on a reference line (edge):\n";
 
  216     for (
int i=0; i<=maxOrder; i++) {
 
  218       for (
int j=0; j <= maxDeg; j++) {
 
  220         for (
int k=0; k <= maxDeg; k++) {
 
  223             analyticInt = evalInt(dimension, power, rule1);
 
  224             testInt     = evalQuad(power,dimension,maxOrder,rule1,growth1);
 
  226             long double abstol  = (analyticInt == 0.0 ? reltol : std::fabs(reltol*analyticInt) );
 
  227             long double absdiff = std::fabs(analyticInt - testInt);
 
  228             *outStream << 
"Cubature order " << std::setw(2) << std::left << i 
 
  229                        << 
" integrating " << 
"x^" << std::setw(2) 
 
  230                        << std::left << j << 
"y^" << std::setw(2) << std::left 
 
  231                        << k <<  
":" << 
"   " << std::scientific 
 
  232                        << std::setprecision(16) << testInt 
 
  233                        << 
"   " << analyticInt << 
"   "  
  234                        << std::setprecision(4) << absdiff << 
"   "  
  235                        << 
"<?" << 
"   " << abstol << 
"\n";
 
  236             if (absdiff > abstol) {
 
  238               *outStream << std::right << std::setw(104) << 
"^^^^---FAILURE!\n";
 
  247   catch (std::logic_error err) {
 
  248     *outStream << err.what() << 
"\n";
 
  254     std::cout << 
"End Result: TEST FAILED\n";
 
  256     std::cout << 
"End Result: TEST PASSED\n";
 
  259   std::cout.copyfmt(oldFormatState);
 
Builds general adaptive sparse grid rules (Gerstner and Griebel) using the 1D cubature rules in the I...
Header file for the Intrepid::AdaptiveSparseGrid class. 
Implementation of a templated lexicographical container for a multi-indexed scalar quantity...
Header file for the Intrepid::CubatureTensorSorted class. 
Utilizes 1D cubature (integration) rules contained in the library sandia_rules (John Burkardt...