92 #include "Epetra_Time.h" 
   93 #include "Epetra_Map.h" 
   94 #include "Epetra_FECrsMatrix.h" 
   95 #include "Epetra_FEVector.h" 
   96 #include "Epetra_SerialComm.h" 
   99 #include "Teuchos_oblackholestream.hpp" 
  100 #include "Teuchos_RCP.hpp" 
  101 #include "Teuchos_BLAS.hpp" 
  104 #include "Shards_CellTopology.hpp" 
  107 #include "EpetraExt_RowMatrixOut.h" 
  108 #include "EpetraExt_MultiVectorOut.h" 
  111 using namespace Intrepid;
 
  114 double evalu(
double & x, 
double & y, 
double & z);
 
  115 int evalGradu(
double & x, 
double & y, 
double & z, 
double & gradu1, 
double & gradu2, 
double & gradu3);
 
  116 double evalDivGradu(
double & x, 
double & y, 
double & z);
 
  118 int main(
int argc, 
char *argv[]) {
 
  122       std::cout <<
"\n>>> ERROR: Invalid number of arguments.\n\n";
 
  123       std::cout <<
"Usage:\n\n";
 
  124       std::cout <<
"  ./Intrepid_example_Drivers_Example_05.exe deg NX NY verbose\n\n";
 
  125       std::cout <<
" where \n";
 
  126       std::cout <<
"   int deg             - polynomial degree to be used (assumed > 1) \n";
 
  127       std::cout <<
"   int NX              - num intervals in x direction (assumed box domain, 0,1) \n";
 
  128       std::cout <<
"   int NY              - num intervals in y direction (assumed box domain, 0,1) \n";
 
  129       std::cout <<
"   verbose (optional)  - any character, indicates verbose output \n\n";
 
  135   int iprint     = argc - 1;
 
  136   Teuchos::RCP<std::ostream> outStream;
 
  137   Teuchos::oblackholestream bhs; 
 
  139     outStream = Teuchos::rcp(&std::cout, 
false);
 
  141     outStream = Teuchos::rcp(&bhs, 
false);
 
  144   Teuchos::oblackholestream oldFormatState;
 
  145   oldFormatState.copyfmt(std::cout);
 
  148     << 
"===============================================================================\n" \
 
  150     << 
"|  Example: Generate Stiffness Matrix and Right Hand Side Vector for          |\n" \
 
  151     << 
"|                   Poisson Equation on Quadrilateral Mesh                    |\n" \
 
  153     << 
"|  Questions? Contact  Pavel Bochev  (pbboche@sandia.gov),                    |\n" \
 
  154     << 
"|                      Denis Ridzal  (dridzal@sandia.gov),                    |\n" \
 
  155     << 
"|                      Kara Peterson (kjpeter@sandia.gov).                    |\n" \
 
  157     << 
"|  Intrepid's website: http://trilinos.sandia.gov/packages/intrepid           |\n" \
 
  158     << 
"|  Trilinos website:   http://trilinos.sandia.gov                             |\n" \
 
  160     << 
"===============================================================================\n";
 
  165   int deg          = atoi(argv[1]);  
 
  166   int NX            = atoi(argv[2]);  
 
  167   int NY            = atoi(argv[3]);  
 
  173   typedef shards::CellTopology    CellTopology;
 
  174   CellTopology quad_4(shards::getCellTopologyData<shards::Quadrilateral<4> >() );
 
  177   int numNodesPerElem = quad_4.getNodeCount();
 
  178   int spaceDim = quad_4.getDimension();
 
  182   *outStream << 
"Generating mesh ... \n\n";
 
  184   *outStream << 
"   NX" << 
"   NY\n";
 
  185   *outStream << std::setw(5) << NX <<
 
  186     std::setw(5) << NY << 
"\n\n";
 
  189   int numElems = NX*NY;
 
  190   int numNodes = (NX+1)*(NY+1);
 
  191   *outStream << 
" Number of Elements: " << numElems << 
" \n";
 
  192   *outStream << 
"    Number of Nodes: " << numNodes << 
" \n\n";
 
  195   double leftX = 0.0, rightX = 1.0;
 
  196   double leftY = 0.0, rightY = 1.0;
 
  199   double hx = (rightX-leftX)/((
double)NX);
 
  200   double hy = (rightY-leftY)/((
double)NY);
 
  206   for (
int j=0; j<NY+1; j++) {
 
  207     for (
int i=0; i<NX+1; i++) {
 
  208       nodeCoord(inode,0) = leftX + (double)i*hx;
 
  209       nodeCoord(inode,1) = leftY + (double)j*hy;
 
  210       if (j==0 || i==0 || j==NY || i==NX){
 
  211         nodeOnBoundary(inode)=1;
 
  214         nodeOnBoundary(inode)=0;
 
  222   ofstream fcoordout(
"coords.dat");
 
  223   for (
int i=0; i<numNodes; i++) {
 
  224     fcoordout << nodeCoord(i,0) <<
" ";
 
  225     fcoordout << nodeCoord(i,1) <<
"\n";
 
  235   for (
int j=0; j<NY; j++) {
 
  236     for (
int i=0; i<NX; i++) {
 
  237       elemToNode(ielem,0) = (NX + 1)*j + i;
 
  238       elemToNode(ielem,1) = (NX + 1)*j + i + 1;
 
  239       elemToNode(ielem,2) = (NX + 1)*(j + 1) + i + 1;
 
  240       elemToNode(ielem,3) = (NX + 1)*(j + 1) + i;
 
  246   ofstream fe2nout(
"elem2node.dat");
 
  247   for (
int j=0; j<NY; j++) {
 
  248     for (
int i=0; i<NX; i++) {
 
  249       int ielem = i + j * NX;
 
  250       for (
int m=0; m<numNodesPerElem; m++){
 
  251         fe2nout << elemToNode(ielem,m) <<
"  ";
 
  261   *outStream << 
"Getting cubature ... \n\n";
 
  265   int cubDegree = 2*deg;
 
  266   Teuchos::RCP<Cubature<double> > quadCub = cubFactory.
create(quad_4, cubDegree); 
 
  268   int cubDim       = quadCub->getDimension();
 
  269   int numCubPoints = quadCub->getNumPoints();
 
  274   quadCub->getCubature(cubPoints, cubWeights);
 
  279   *outStream << 
"Getting basis ... \n\n";
 
  283   int numFieldsG = quadHGradBasis.getCardinality();
 
  288   quadHGradBasis.getValues(quadGVals, cubPoints, OPERATOR_VALUE);
 
  289   quadHGradBasis.getValues(quadGrads, cubPoints, OPERATOR_GRAD);
 
  293   const int numDOF = (NX*deg+1)*(NY*deg+1);
 
  295   for (
int j=0;j<NY;j++) {
 
  296     for (
int i=0;i<NX;i++) {
 
  297       const int start = deg * j * ( NX * deg + 1 ) + i * deg;
 
  300       for (
int vertical=0;vertical<=deg;vertical++) {
 
  301         for (
int horizontal=0;horizontal<=deg;horizontal++) {
 
  302           ltgMapping(ielem,local_dof_cur) = start + vertical*(NX*deg+1)+horizontal;
 
  311   ofstream ltgout(
"ltg.dat");
 
  312   for (
int j=0; j<NY; j++) {
 
  313     for (
int i=0; i<NX; i++) {
 
  314       int ielem = i + j * NX;
 
  315       for (
int m=0; m<numFieldsG; m++){
 
  316         ltgout << ltgMapping(ielem,m) <<
"  ";
 
  325   *outStream << 
"Building stiffness matrix and right hand side ... \n\n";
 
  330   int numCells = numElems; 
 
  348   Epetra_SerialComm Comm;
 
  349   Epetra_Map globalMapG(numDOF, 0, Comm);
 
  351   Epetra_Time graphTimer(Comm);
 
  352   Epetra_CrsGraph grph( Copy , globalMapG , 4 * numFieldsG );
 
  353   for (
int k=0;k<numElems;k++) 
 
  355       for (
int i=0;i<numFieldsG;i++)
 
  357           grph.InsertGlobalIndices(ltgMapping(k,i),numFieldsG,<gMapping(k,0));
 
  362   const double graphTime = graphTimer.ElapsedTime();
 
  363   std::cout << 
"Graph computed in " << graphTime << 
"\n";
 
  365   Epetra_Time instantiateTimer( Comm );
 
  366   Epetra_FECrsMatrix StiffMatrix( Copy , grph );
 
  367   const double instantiateTime = instantiateTimer.ElapsedTime(  );
 
  368   std::cout << 
"Matrix instantiated in " << instantiateTime << 
"\n";
 
  370   Epetra_FEVector u(globalMapG);
 
  371   Epetra_FEVector Ku(globalMapG);
 
  378   for (
int i=0;i<numElems;i++)
 
  380       for (
int j=0;j<4;j++)
 
  382           const int nodeCur = elemToNode(i,j);
 
  383           for (
int k=0;k<spaceDim;k++) 
 
  385               cellVertices(i,j,k) = nodeCoord(nodeCur,k);
 
  390   Epetra_Time localConstructTimer(Comm);
 
  393   CellTools::setJacobian(cellJacobian, cubPoints, cellVertices, quad_4);
 
  394   CellTools::setJacobianInv(cellJacobInv, cellJacobian );
 
  395   CellTools::setJacobianDet(cellJacobDet, cellJacobian );
 
  398   fst::HGRADtransformGRAD<double>(transformedBasisGradients, cellJacobInv, quadGrads);
 
  401   fst::computeCellMeasure<double>(weightedMeasure, cellJacobDet, cubWeights);
 
  404   fst::multiplyMeasure<double>(weightedTransformedBasisGradients,
 
  405                                weightedMeasure, transformedBasisGradients);
 
  408   fst::integrate<double>(localStiffMatrices,
 
  409                          transformedBasisGradients, weightedTransformedBasisGradients , COMP_BLAS);
 
  411   const double localConstructTime = localConstructTimer.ElapsedTime();
 
  412   std::cout << 
"Time to build local matrices (including Jacobian computation): "<< localConstructTime << 
"\n";
 
  414   Epetra_Time insertionTimer(Comm);
 
  417    for (
int k=0; k<numElems; k++) 
 
  420        StiffMatrix.InsertGlobalValues(numFieldsG,<gMapping(k,0),numFieldsG,<gMapping(k,0),&localStiffMatrices(k,0,0));
 
  423    StiffMatrix.GlobalAssemble(); StiffMatrix.FillComplete();
 
  424    const double insertionTime = insertionTimer.ElapsedTime( );
 
  426    std::cout << 
"Time to assemble global matrix from local matrices: " << insertionTime << 
"\n";
 
  436    std::cout << 
"End Result: TEST PASSED\n";
 
  439    std::cout.copyfmt(oldFormatState);
 
Header file for utility class to provide multidimensional containers. 
Header file for the abstract base class Intrepid::DefaultCubatureFactory. 
Header file for the Intrepid::HGRAD_QUAD_Cn_FEM class. 
A factory class that generates specific instances of cubatures. 
Teuchos::RCP< Cubature< Scalar, ArrayPoint, ArrayWeight > > create(const shards::CellTopology &cellTopology, const std::vector< int > °ree)
Factory method.